
Writing LCFG
Components

Paul Anderson <dcspaul@inf.ed.ac.uk>

http://homepages.inf.ed.ac.uk/dcspaul

LCFG Tutorial, June 2007

T
H
E

U
N IV E R

S

I
T
Y

O
F

E
D
I N B U

R

G
H

Overview

• An example daemon

- chatterd

• The LCFG component framework

- lcfg-skeleton & buildtools

• Creating the schema file

- chatter.def

• Creating the component

- chatter

• Some reflections

Chatterd

#!/bin/sh

The message comes from the command line argument
message=$1

Save the PID of the daemon so we can find it
echo $$ >/var/lcfg/tmp/chatterd.pid

Log the fact that we are starting
echo `date` : chatterd starting >>/var/log/chatterd

Chatter away - write message to log every 2 seconds
while true ; do

 echo `date` : $message >>/var/log/chatterd

 sleep 2

done

An example daemon

• /usr/lib/chatterd message

- writes the message to the log every 2 seconds

- writes the PID to a file so we can find it

• Run it (as root)

- /usr/lib/chatterd “some message”

• Watch the log (in another window)

- tail -f /var/log/chatterd

• Stop the daemon (as root, in another window)

- kill `cat /var/lcfg/tmp/chatterd.pid`

• Managing this requires a custom component

- we want to restart when the resources change

Overview

An example daemon

• The framework

• The schema file

• The component

• Some reflections

We now have a simple
daemon.

We are going to look at the
LCFG framework so we can
use it to create a controlling

component

The component framework

• We need to create:

- a schema file, containing resource type definitions,
default values & validation code

- the component code

• LCFG provides some support for this:

- lcfg-ngeneric provides default code for most
of the component with methods which can be
overriden

- lcfg-buildtools provides makefiles for
configuring, building packages, installing, etc.

- lcfg-skeleton generates skeleton files for a
new component

Creating a new component

[lcfgfc6@localhost ~] lcfg-skeleton

Name of component [mycomp] ? chatter

One line description [] ? Example component

Add to CVS (yes/no) [no] ? no

Perl (pl) or Shell (sh) [sh] ? sh

Component author [] ? Joe Smith

Author email [lcfgfc6@localdomain] ? Joe@foo.com

Platforms [Redhat9, ..., Fedora5] ? Fedora5

Include regression test files (yes/no) [yes] ? no

Restart component on RPM update (yes/no) [yes] ? yes

file: ChangeLog

.....

lcfg-chatter not added to cvs

[lcfgfc6@localhost ~]

• We will not be using these files -

- Changelog - CVS changelog

- README - the component readme

- README.BUILD - generic readme

- specfile - used to build an RPM automatically

- this requires a CVS repository

- chatter.pod.cin - documentation skeleton

• You must delete this file (but not the others) -

- test.mk - specific resource values for testing

Component files

Component files

• These are the files we will use -

- chatter.def.cin - skeleton for the schema

- chatter.cin - skeleton for the component

- config.mk - build-time configuration variables

• The variables in config.mk are substituted in
the .cin files by the buildtools makefiles -

- type make

- compare chatter.cin and chatter

- type make clean

Config.mk

COMP=chatter

NAME=lcfg-$(COMP)

DESCR=Example component to control daemon

V=0.99.0

R=1

SCHEMA=1

VERSION=$(V)

GROUP=LCFG

AUTHOR=Paul Anderson <dcspaul@inf.ed.ac.uk>

PLATFORMS=Fedora5

MANDIR=$(LCFGMAN)/man$(MANSECT)

DATE=30/05/07 10:48

Overview

An example daemon

The framework

• The schema file

• The component

• Some reflections

We have used the LCFG
framework to create

skeletons for the schema
and the component code.

We are now going to fill in
the schema skeleton to
define the resources we
need for the component.

Creating the schema file

#include "ngeneric-1.def"

#include "om-1.def"

schema @SCHEMA@

message undefined

@message %string(message): !/^undefined$/

• Edit the schema skeleton chatter.def.cin to
include a new resource:

• The first new line defines a new resource message
with the default value ”undefined”

• The second new line is a validation which says that
the final value of the resource must not be the string
”undefined”

Using the schema

• Type make install to install the schema file

- this goes in to /usr/lib/lcfg/defaults

• Edit the localhost profile to add the new
component
!profile.components mADD(chatter)

profile.version_chatter 1

• The server will notice the change to the
localhost profile and recompile it

• Check the status page

- why does the profile show an error?

Mutation (an aside)

• The compiler will generate an error if a resource
is redefined -

- foo.bar some value

- foo.bar some other value

• To change a defined value, the compiler supports
mutations which allow you to specify how the old
and new values are combined -

- foo.bar some value

- !foo.bar mSET(some new value)

- !foo.bar mADD(a string to the end)

• See the LCFG guide (5.2.4)

Configuring the host

• You might want to watch the server and client
logs (in separate windows) while we do this ..

- tail -f /var/lcfg/log/server

- tail -f /var/lcfg/log/client

• Edit the localhost profile to add a value for our
new resource
chatter.message Hello World

• The server will compile it again

- check the status page & watch the logs

• The client should now have the new resources

- qxprof chatter

Overview

An example daemon

The framework

The schema file

• The component

• Some reflections

We have created a schema
file for the new component
and added the schema to

the host, and defined values
for the resources.

We are now going to
implement a component to

process these resources.

What is a component ?

• A component is a simple script which is called by
the LCFG framework with various methods -

- /usr/lib/lcfg/components/foo start

• The methods are usually called using the om
command, which can also be issued manually -

- om foo start

- om foo stop

- om foo configure

• The framework provides a library for the
component to access the resource values, and
default code for all the methods

The component skeleton

#!@SHELL@

@TESTSHELLV@ . @LCFGCOMP@/ngeneric

Configure() {
 # Set up configuration here
 return
}

Start() {
 # Start daemon here
 return
}

Stop() {
 # Stop daemon here
 return
}

Dispatch "$@"

• Look at the skeleton file
chatter.cin

• The second line includes
the ngeneric library
which provides utility
functions and defaults all
the methods

The component skeleton

#!@SHELL@

@TESTSHELLV@ . @LCFGCOMP@/ngeneric

Configure() {
 # Set up configuration here
 return
}

Start() {
 # Start daemon here
 return
}

Stop() {
 # Stop daemon here
 return
}

Dispatch "$@"

• The second line includes
the ngeneric library
which provides utility
functions and defaults all
the methods

• The Dispatch routine
processes the command
line and calls the
methods

#!@SHELL@

@TESTSHELLV@ . @LCFGCOMP@/ngeneric

Configure() {
 # Set up configuration here
 return
}

Start() {
 # Start daemon here
 return
}

Stop() {
 # Stop daemon here
 return
}

Dispatch "$@"

The component skeleton

#!@SHELL@

@TESTSHELLV@ . @LCFGCOMP@/ngeneric

Configure() {
 # Set up configuration here
 return
}

Start() {
 # Start daemon here
 return
}

Stop() {
 # Stop daemon here
 return
}

Dispatch "$@"

• The second line includes
the ngeneric library
which provides utility
functions and defaults all
the methods

• The Dispatch routine
processes the command
line and calls the
methods

• We need to edit the
skeleton methods ...

The component skeleton

The chatter component

Start() {

 Daemon "/usr/lib/chatterd '$LCFG_chatter_message'"

 return

}

Stop() {

 PID=`cat /var/lcfg/tmp/chatterd.pid`

 kill $PID

 return

}

Configure() {

 IsStarted && Stop && Start

 return

}

Framework support

• The framework provides some utility functions,
including -

- IsStarted - true if the component has been
started

- Daemon - start a process in the background
with appropriate process group fiddling etc.

• The framework makes all the resources available
as simple shell variables -

- $LCFG_component_resource

- Eg. $LCFG_chatter_message

Using the component

• Add the code to the component skeleton

• Do make install to install it

• Do om chatter start to start it

• Check the log file to see that it is logging the message

• Change the resource value in the profile and watch
the component restart the daemon and start logging
the new message. You may want to watch the logs -

- tail -f /var/lcfg/log/server

- tail -f /var/lcfg/log/client

- tail -f /var/lcfg/log/chatterd

- tail -f /varlog/chatterd

Overview

An example daemon

The framework

The schema file

The component

• Some reflections

We have created a new
component to control our

daemon, including the code
and the schema file.

We have configured a host
to use this component and

defined values for the
resources

We are going to finish by
reflecting on the implications

of all this

Some reflections

• Think about how little we wrote (<10 lines?)

• Notice that the resource values could be included
in a header file, and hundreds of machines would
reconfigure as soon as the header was changed

• The values in the header file are very simple, and
could be auto-generated (by some autonomic
process?)

• Simple conditionals in the header file can be used
to make site-wide relationships

- although spanning maps provide more support
for this

Configuring relationships
#define SERVER hostA

#ifeq HOSTNAME SERVER

chatter.message I am the server

/* And a lot of other stuff to

 set up the server */

#else

chatter.message The server is SERVER

/* And stuff to set me up as a client

 of SERVER */

#endif

Some exercises

• Modify the chatterd component so that the
message frequency can also be specified as a
resource

• Look at the LCFG guide (10.3.12) and include
some more robust error checking in the
component.

• Assume that chatterd was more complex and
required a configuration file constructing from the
the resources. Use the template processor to
create a config file including resource values
(10.3.11)

References

• Slides for this talk:
http://homepages.inf.ed.ac.uk/dcspaul/publications/ukuug2007b.pdf

• The Complete Guide to LCFG
http://www.lcfg.org/doc/guide.pdf

• Paul Anderson
http://homepages.inf.ed.ac.uk/dcspaul
<dcspaul@inf.ed.ac.uk>

T
H
E

U
N IV E R

S

I
T
Y

O
F

E
D
I N B U

R

G
H

