

System Configuration :
 An end to hacky scripts?

Stephen Quinney <squinney@inf.ed.ac.uk>
School of Informatics, University of Edinburgh

mailto:squinney@inf.ed.ac.uk

The life of a Systems
Administrator should never be

dull!

http://xkcd.com/292/

From flickr.com (c) Buttonhead

From flickr.com
 (C) *keng

From flickr.com (c) Pikesville

Example - resolv.conf

● Controls host name resolution
● Text file – designed to be simple
● Looks similar to:

nameserver 129.215.46.246
nameserver 129.215.64.240
search inf.ed.ac.uk
sortlist 129.215.46.0/255.255.255.0 129.215.144.0/255.255.255.0

Manual Approach

● One machine – Easy
● Several machines – Boring
● Many machines – Utterly Tedious

P
o

o
r

S
calin

g

“I’ve got Perl* here and I’m not
afraid to use it!”

*Substitute cool flavour-of-the-month scripting language

A “hacky” solution

● Recipe:

1. Create list of all machines

2. Write new config file

3. Write short install script utilising scp

Problems

● What about uncontactable machines?
– Need to handle timeouts
– Need to keep a list of busy and dead

● What about machines belonging to
others?

● What about new machines?

Further Issues

● What happens if you aren’t a specialist?
– Can you grok/edit sendmail configs?

● How can individual tasks be delegated?
● Typical solutions involve:

– Templates
– Version control system for config files

Push v Pull

● “Pushing” new config files to a host leads
to various issues:
– Typically involves manual intervention
– Typically a “serial” approach - inefficient
– Hard to handle dead and busy hosts
– Harder to check successful installation

● Why not get the client to pull changes
automatically and report back?

Extending the Example

● New requirement:
– The order of the nameserver list must be

randomised on a per-host basis.
● Simple solution:

1. Generate all possible files.

2. Make your script even hackier so it copies a
random selection.

Still more problems!

● You might need to embed information
which is host-specific.

● You might need information which is only
on the physical host.

● Are your scripts generic and reusable?
● Do you share your scripts? Could anyone

else use them?
● Are your scripts documented?

Managing Services

● A further extension of the “managing file
contents” problem.

● Requirements:
– Know when services should be restarted.
– Know how to restart each service.
– Only restart if the new config file is valid.
– Report back success or failure of restart

LCFG – Overview

● Client/Server Architecture.
● Each client has a “source profile”.
● Config files are built on the client using:

– Data stored on the server as “resources”.
– Scripts and templates stored on client.

● Server processes the source profile and
generates an XML representation.

LCFG Overview

LCFG – Component Overview

● Resources are logically grouped into
“components”.

● A profile consists of several components.
● Components have scripts which are based

on a standard framework.
● Respond to a set of methods:

– start, stop, restart, configure, run, etc..

LCFG – Client Overview

1. Pulls down the generated XML file.

2. Notices any resource changes.

3. Calls the “configure” method for affected
components.

Back to resolv.conf

● Perl-based component (we also support
shell).

● Need to sub-class LCFG::Component.
● Overrides the default Configure method.

lcfg-resolvconf - Code
sub Configure {
 my ($self, $res) = @_;

 my $status = LCFG::Template::Substitute(
 $res->{template}{VALUE},
 $res->{configfile}{VALUE},
 4, $res);

 if (! defined $status) {
 $self->LogMessage($@);
 $self->Fail("update failed (see logfile)");
 }
 elsif ($status == 1) {
 $self->LogMessage("successful update");
 }

 return;
}

lcfg-resolvconf - Resources

#include <lcfg/options/resolvconf.h>

resolvconf.nameservers 129.215.46.33\
 129.215.46.246\
 129.215.64.240

resolvconf.sortlist 129.215.46.0/255.255.255.0\
 129.215.144.0/255.255.255.0\
 129.215.41.0/255.255.255.0\
 129.215.32.0/255.255.255.0

resolvconf.randomize true

Sets up default resources
 & adds package

Component Resource name

lcfg-resolvconf - Template
[% FOR server IN nameservers.split('\s+') -%]
nameserver [% server %]
[% END -%]
[% IF search.length > 0 -%]
search [% search %]
[% END -%]
[% IF domain.length > 0 -%]
domain [% domain %]
[% END -%]
[% IF sortlist.length > 0 -%]
sortlist [% sortlist %]
[% END -%]
[% IF optstring.length > 0 -%]
options [% optstring %]
[% END -%]

lcfg-resolvconf - Output

nameserver 129.215.46.246
nameserver 129.215.64.240
nameserver 129.215.46.33
search inf.ed.ac.uk
domain inf.ed.ac.uk
sortlist 129.215.46.0/255.255.255.0 ...
129.215.144.0/255.255.255.0 ...
129.215.41.0/255.255.255.0 ...
129.215.32.0/255.255.255.0
options ndots:1 timeout:5 attempts:2

From default values

Components for Services

● Make Configure call Restart on change
● Need to also override Start, Stop
● This might be as simple as:

Start() {
 /etc/init.d/openssh start
}

Stop() {
 /etc/init.d/openssh stop
}

Extra Benefits

● Resource validity checking
● Useful defaults – minimal effort needed
● Boot-time and configure-time sequencing

– e.g. Add a user before using it for file owner
● Automated installer

Conclusions

● System configuration frameworks make
life less dull!

● Provides the ability to:
– Manage change automatically
– Stop focussing on the implementation
– Start thinking about the intentions

● System management moves to a higher
level

Where To Now?

● http://www.lcfg.org/
● http://wiki.lcfg.org/
● info@lcfg.org
● SAGE System Configuration booklet -

http://www.sage.org/pubs/14_sysconfig/
● SAGE LCFG booklet – coming soon!

http://www.lcfg.org/
http://wiki.lcfg.org/
mailto:info@lcfg.org
http://www.sage.org/pubs/14_sysconfig/

