
Division of Informatics
The DICE Project

Node Profile Specification

Release 1-1.05 Tue Jul 24 09:32:12 2001

Release Notes

This document supersedes and obsoletes all previous releases of the
node profile specification document.

Node Profile Specification

i

Table of Contents

1 About This Document . 1-1
2 Node Profile. 2-1

2-1 Structure . 2-2
2-1-1 Resources and Properties . 2-2
2-1-2 Nested Resources . 2-3
2-1-3 Named Elements . 2-3
2-1-4 Encoding LCFG . 2-4

2-2 Addressing . 2-5
2-2-1 Base Address. 2-5
2-2-2 Resource and Property Address 2-5
2-2-3 Element Naming . 2-6

2-3 Namespaces . 2-7
2-4 Values . 2-8

2-4-1 Value Formats. 2-8
 2-4-2 Objects. 2-8

2-5 Attributes. 2-10
2-5-1 Name . 2-10
2-5-2 Type . 2-11
2-5-3 Encoding . 2-11
2-5-4 Issue . 2-12
2-5-5 Derivation . 2-12
2-5-6 Template . 2-12
2-5-7 Access Control . 2-13
2-5-8 Context Switching . 2-13

A Example DTD . A-1

A side-bar note is to used to
elaborate on a definition like a
glossary entry; to give a list of
example values; to provide a
footnote like aside to the main
flow of text. Side-bar notes are
generally horizontally aligned
with the paragraph they are
associated with.

Node Profile Specification

1-1

1 About This Document

This is the main body of the text. You really ought to try and read this!

• Boxes like this raise important or interesting points that are supple-
mental to the main flow of the rest of the text or to group together
items under a certain heading.

The NAME font is used for the names of all objects in the description.

The italic and bold fonts are used for values or just to emphasize a par-
ticular word or phrase.

• Boxes like this group information on the same subject.

Node Profile Specification

2-1

2 Node Profile

A node profile is a per-host configuration description. It consists of sets
of key/value pairs with support for representing complex structures
such as lists, records, trees and large embedded or referenced objects.
For development and prototyping the existing LCFG NIS map is ex-
panded and converted into a node profile for each host via an adaptor.

A node profile is represented in XML and has a corresponding SGML
DTD for validation. It looks much like a simplified Strawman RDF syn-
tax. The XML-Namespace syntax is used to support separate name
groups within a profile. The URI notation and a pseudo XPath notation
are used for references and element addressing.

Some rudimentary knowledge of the following recommendations and
specifications is useful for understanding this specification.

• XML and DTD ("http://www.w3.org/TR/2000/REC-xml-
20001006")

• XML-Namespace ("http://www.w3.org/TR/1999/REC-xml-names-
19990114/")

• RDF ("http://www.w3.org/TR/REC-rdf-syntax/")
• RDF-Schema ("http://www.w3.org/TR/2000/CR-rdf-schema-

20000327/")
• Strawman ("http://www.w3.org/DesignIssues/Syntax")
• XPath ("http://www.w3.org/TR/xpath.html")
• URI ("http://www.ietf.org/rfc/rfc2396.txt")

Some additional documents of ancillary interest are listed below.

• XPointer ("http://www.w3.org/TR/xptr")
• DSML ("http://www.dsml.org/")
• XML-Include ("http://www.w3.org/TR/xinclude/")
• XML-Schema ("http://www.w3.org/TR/xmlschema-0/",

"http://www.w3.org/TR/xmlschema-1/" and
"http://www.w3.org/TR/xmlschema-2/")

• XSL ("http://www.w3.org/TR/xsl/")
• XSLT ("http://www.w3.org/TR/xslt.html")

The structure is very like a
filesystem: a resource is a di-
rectory, a property is a file, a
value is the contents of a file.

Each distribution web server
could rewrite the schema URI
references to point at copies
held locally.

Any literal value must conform
to XML special symbol escap-
ing notation, so an embedded
less than symbol (<) must be
written as < for example.

Node Profile Specification

2-2

2-1 Structure

An XML representation is used to hold resources and property/value
pairs for resources.

Below is an example of a basic profile container, the actual content of
which is expanded on in later sections.

<?xml version="1.0"?>
<!DOCTYPE profile SYSTEM
"http://cfg.inf.ed.ac.uk/1.0/profile.dtd">

<profile
xmlns="http://cfg.inf.ed.ac.uk/1.0/profilens"
xmlns:cfg="http://cfg.inf.ed.ac.uk/1.0/cfgns">

<!-- RESOURCES -->

</profile>

The profile element (root node) contains zero or more distinct resource
elements. The permissible resource elements are specified in the DTD.

The ordering of elements and child elements in the profile itself is pre-
served through to the API and is significant.

2-1-1 Resources and Properties

A resource element either contains multiple and distinct property and
resource elements or contains multiple instances of the same resource
element or is empty. The permissible content of a resource element is
specified in the DTD.

A property element is either empty or contains a literal value. The per-
missible property elements and values in each resource element are
specified in the DTD.

<vmware>
<encrypt>no</encrypt>
<license>118456</license>

</vmware>

In the example above the vmware resource contains two properties, en-
crypt and license.

An element can be either a container of other elements (a resource) or
have a literal value (a property), it can never be both. This restriction is
specified in the DTD. A configuration component with more than one
value must either be represented as some kind of embedded list in a
property value or as a nested resource.

Multiple instances of the same resource or property element can occur
intermixed with other elements only when all instances of the same

The name does not need to be
unique in the profile but must
be unique against all siblings
of the same element type. The
DTD cannot validate this
(without the specific name
values being encoded into it).

Node Profile Specification

2-3

element are distinguished by use of the cfg:context attribute (a require-
ment that is specified in the DTD). This is used for context switching
and as far as the client node is concerned only one instance of the ele-
ment is ever visible through the API, the particular instance is deter-
mined by the client node cache manager and the current context.

2-1-2 Nested Resources

Nested resource elements allow a tree like structure of configuration
components to be built to any level.

<disk>
<device>/dev/hda</device>
<partitions>

<partition>
<size>1000</size>
<mount>/</mount>

</partition>
<partition>

<size>250</size>
<mount>/tmp</mount>

</partition>
</partitions>

</disk>

In the example above the disk resource consists of a device property and
a partitions resource. The partitions resource contains multiple instances
of the partition resource. Each partition resource contains a size and mount
property.

2-1-3 Named Elements

Multiple instances of the same resource or property element can option-
ally be given a name so that they can be addressed by name rather than
by index. This is specified with the cfg:name attribute.

<disk>
<device>/dev/hda</device>
<partitions>

<partition cfg:name="root">
<size>1000</size>
<mount>/</mount>

</partition>
<partition cfg:name="tmp">

<size>250</size>
<mount>/tmp</mount>

</partition>
</partitions>

</disk>

Multiple instances of the same element must either be all named or all
unnamed, mixes of named and unnamed elements of the same type are
not permitted. This restriction is specified in the DTD. The DTD also re-
stricts the use of the cfg:name attribute to elements permitted to appear
more than once.

Node Profile Specification

2-4

Without explicit names the names of multiple instances of elements are
a constructed index position. The names of single instances of elements
are the same as the element type.

2-1-4 Encoding LCFG

For development and prototyping, the existing LCFG key/value pairs
will be mapped into resources and properties in the profile using the
new syntax structure as above but under a special resource tree and
with a separate namespace. This will allow them to be slowly migrated
into the new structure.

<profile>
.
.
.
<lcfg xmlns=’http://cfg.inf.ed.ac.uk/1.0/lcfgns’>

<vmware>
<encrypt>yes</encrypt>

</vmware>
.
<update>

.

.

.
</update>

</lcfg>
</profile>

The server path is passed to the
client very early in the boot
sequence via DHCP.

A fully qualified hostname
allows profiles for client nodes
in multiple domains to be
hosted from the same configu-
ration server.

Node Profile Specification

2-5

2-2 Addressing

The client node profiles are held and distributed via one or more web
servers. The whole profile for a client node is fetched as a single unit ex-
cept for the values of property elements which are references rather
than actually embedded in the profile.

Authentication and authorization for a client to access its profile is
handled either transparently by HTTP (e.g. using SSL certificates) or in-
side HTTP (e.g. credentials passed as part of the HTTP request). Com-
munication over the network is encrypted (e.g. SSL also).

In order to address individual elements (or attributes) in the XML rep-
resentation of the configuration profile the client node API supports a
simple directory path access notation.

2-2-1 Base Address

The profile for a client node is handed back from a web server either
from a various URI addresses or via a CGI script interface. This allows
the profile to be requested in different ways based on the keys available
at the time.

http://cfg.inf.ed.ac.uk/profile?hn=fqhname

In the example above fqhname is the fully qualified host name of the cli-
ent node (for example wibble.dcs.ed.ac.uk). The above returns profile.xml
containing the full XML profile for that client node as described in the
previous section. Other possible lookups could be by host id, IP address
or MAC address for example. The lookup may also need to include
suitable credentials if SSL over HTTP is not implemented.

Additional addresses could be supported for distributing information
common to all client nodes. These could hold the profile DTD as well as
any additional files which are used by all nodes, such as an RPM re-
pository for example.

A per-node directory may also be supported to contain additional files
specific to each node which are part of that nodes profile but are not
held in the profile itself (referenced large objects for example).

2-2-2 Resource and Property Address

The client node fetches a profile for itself using an appropriate address
as above. Addressing elements within that profile is then achieved
through the client node API using a simple directory/file path notation.
The traversal through a node profile resembles very much a directory
tree structure traversal.

Node Profile Specification

2-6

/vmware

The above example addresses the vmware resource element. The re-
turned value is a list of element names contained by the resource.

/vmware/encrypt

The above example addresses the encrypt property element of the vm-
ware resource element. The returned value is the literal value of the en-
crypt property.

Multiple elements are addressed in the same way.

/disk/partitions

The above example addresses the partitions resource element of the
disk resource element. Since the partitions resource contains multiple
instances of the same resource the returned value is either a list of the
names (if defined with cfg:name) or a list of generated names (index val-
ues). In the former case individual elements can be addressed as below:

/disk/partitions/root
/disk/partitions/tmp

Whereas in the latter case individual elements are addressed as below:

/disk/partitions/1
/disk/partitions/2

2-2-3 Element Naming

Resource and property element names (as well as names given as a
value for the cfg:name attribute) should conform to a more restricted
form of the XML name token which excludes the extended and combin-
ing character sets as well as the colon character (since XML-Namespace
is used).

Hence names must begin with an alphabetic character or an underscore
character and can only include alphanumeric characters and the under-
score character.

Node Profile Specification

2-7

2-3 Namespaces

The default namespace is the profile namespace and there are no re-
served words so resource and property elements can be named any-
thing. Elements and attributes from other namespaces are fully quali-
fied. Generally just profile attributes need qualification. Below is a list
of the basic namespaces.

• PRF (profile resource and property elements, default namespace)
• CFG (node profile attributes)
• LCFG (special namespace for holding old LCFG resource and prop-

erty element names)

A DTD does not support the same element type having different defini-
tions based on parent container. In these situations additional custom
profile namespaces may need to be specified, probably on a per-
resource basis, to prevent element names in one resource clashing with
element names in another resource.

<vmware
xmlns="http://cfg.inf.ed.ac.uk/1.0/profilens/vmwarens">
<encrypt>yes</encrypt>

</vmware>
<samba
xmlns="http://cfg.inf.ed.ac.uk/1.0/profilens/sambans">
<encrypt>

<method>3DES</method>
<enable>yes</enable>

</encrypt>
</samba>

Since a DTD does not support XML-Namespace the above could not be
easily validated.

Node Profile Specification

2-8

2-4 Values

The value of a property as a literal is always parsed character data, a re-
striction specified in the DTD. The interpretation of a value is by default
as a character string but other interpretations can be specified using the
cfg:type attribute.

<named>
<server>x.y.z</server>
<serial cfg:type="integer">11566778</serial>
<enable cfg:type="boolean">yes</enable>

</named>

2-4-1 Value Formats

The format of a literal value depends on its type. The accepted types
and formats are listed below.

An INT or LONG literal is a sequence of digits optionally preceeded by a
sign (plus or minus). It is considered to be an octal number if the se-
quence begins with a zero digit. An octal number cannot include the
digits 8 or 9. Alternatively if the sequence of digits starts with 0x or 0X
it is considered to be a hexadecimal number and can include a or A
through f or F as digits representing values 10 through 15 respectively.
An INT has a range of -231 through 231-1. A LONG has a range of -263
through 263-1. Values outside these ranges are illegal.

A FLOAT or DOUBLE literal has an integer part, a decimal point, a frac-
tional part, an e or E and an optional integer exponent. The integer part,
the fractional part and the optional exponent are a sequence of digits.
The integer part and the exponent can optionally be preceeded by a
sign (plus or minus). The integer part or the fractional part (but not
both) can be missing and the decimal point or the exponent (but not
both) can be missing. A FLOAT or DOUBLE has a range of -1.0e+38 to
+1.0e+38 with a precision of 7 digits or 16 digits respectively. Values
outside these ranges are illegal.

A BOOLEAN literal can be yes, true, on or 1 (one digit) to mean true and
no, false, off or 0 (zero digit) to mean false. Any other value is illegal.

A STRING literal can be any parsed character data.

 2-4-2 Objects

External linked objects or embedded objects can also be specified as the
value of a property element. This is achieved using some special case
values of the cfg:type attribute which define the value as being an object
(rather than a literal) and how to access the object.

For example, an embedded
object could contain XML
which would be passed di-
rectly to the component
method as the value for that
property, the component
method would need to be able
to parse XML to interpret the
value.

Node Profile Specification

2-9

<named>
<boot_template cfg:type="fetch">

http://cfg.ed.ac.uk/host/xyz.dcs.ed.ac.uk/named.boot
</boot_template>

</named>

In the example above the value of the boot_template property is the con-
tent of the file referenced by the URI.

Objects can be embedded as in the example below.

<named>
<boot_template cfg:type="embed" cfg:encoding=base64">

<!-- B64 encoded string of object -->
</boot_template>

</named>

Either linked or embedded objects defined as above are returned di-
rectly as the value of the property, no further parsing is carried out.

Very large linked objects can be streamed directly through the client
node API (using a local named pipe, the client daemon passing data
into one end which is consumed by the component at the other end) by
specifying stream as a value for the cfg:type attribute.

Attributes are used by the cli-
ent node but need not neces-
sarily be visible through the
client node API.

Profile attributes are in a sepa-
rate namespace so they don’t
have to be treated as reserved
words in the default
namespace. New ones can then
be added without having to
potentially alter existing pro-
files.

Node Profile Specification

2-10

2-5 Attributes

Global profile attributes are used to define meta-data on resources and
properties. Attributes are used to define timestamps, access control, dy-
namic values and context switching. They are also used for naming and
typing properties as shown in earlier sections.

Profile attributes are defined in the configuration namespace and must
always be prefixed with cfg:. All profile attributes are optional. Most
can be used with both resource and property elements but some can
only be used with one type of element which is specified in the DTD.

There are no ordering constraints on attributes and no significance
should be interpreted from a specific ordering.

2-5-1 Name

The name of a resource or property element is used for addressing and
distinguishing multiple instances of the same element. The name of an
element can be defined using the cfg:name attribute. By default for
single instance elements the name is the same as the element type. By
default for multiple instance elements the name is the index position
number of the element. An element can only be addressed by its speci-
fied name or by its generated index number, never by both.

<vmware>
<licences>

<license cfg:name="user">116778</license>
<license cfg:name="system">117886</license>

</licenses>
<encrypt>yes</encrypt>
<images>





</images>
</vmware>

In the example above the following addresses are valid.

PATH VALUE
/vmware licenses; encrypt; images
/vmware/licenses user; system
/vmware/licenses/user "116778"
/vmware/licenses/system "117886"
/vmware/encrypt "yes"
/vmware/images 1; 2; 3
/vmware/images/1 "basic"
/vmware/images/2 "advanced"
/vmware/images/3 "custom"

Available types for property
elements are:

• String
• Boolean
• Int
• Long
• Float
• Double
• Stream
• Fetch (BLOB)
• Embed (BLOB)

Available types for resource
elements are:

• Resource

Node Profile Specification

2-11

2-5-2 Type

The type of an element. The type of an element is defined using the
cfg:type attribute. The type of a resource element is always RESOURCE,
although this can also be made explicit with this attribute (to ensure
correct identification of an empty element for example when there is no
DTD to refer to). A resource element cannot be any other type and this
restriction is specified in the DTD. The type of a property element de-
termines the interpretation of its literal value. The type of a property el-
ement defaults to STRING, as specified in the DTD. The full set of per-
missible types is specified in the DTD.

In addition there are three special types for a property element.

The FETCH type indicates that the value of the property is a URI the con-
tents of which are fetched by the client node and returned as the value
of the property. The STREAM type indicates that the value of the prop-
erty is a URI the contents of which are streamed directly through the
client node API.

<vmware>
<config_template_file cfg:type="fetch">

http://cfg.inf.ed.ac.uk/etc/vmware.conf
</config_template_file>
<image cfg:type="stream">

http://cfg.inf.ed.ac.uk/rpms/vmware.img.1-34.rpm
</image>

</vmware>

The EMBED type indicates that the value of the property contains an in-
lined (and possibly encoded object) which the client node returns as the
value of the property. The decoding of an embedded object is handled
by the client language library.

<vmware>
<image cfg:type="embed" cfg:encoding="base64">

<!-- B64 encoded data of image -->
</image>

</vmware>

The FETCH and EMBED types are mapped to a BLOB type through the cli-
ent API (the mechanism of retrieving the value is hidden from the client
which merely requests a BLOB type through the API). The STREAM type
is visible at the API and is handled via special access methods.

2-5-3 Encoding

The encoding of a property element. This attribute cannot be used with
resource elements. It defines the way the literal value is embedded. One
encoding type might be Base64 for example. The permissible encoding
types are specified in the DTD.

Timestamps mean elements
can be optionally traversed
based on whether they have
changed since the last tra-
versal.

In a simple increasing numeric
series "now" is always larger
than any other value (i.e. an
empty value would be an infi-
nite value).

The issue number of a resource
is expected to be increased
whenever the issue number of
any property or resource con-
tained by that resource is in-
creased. Issue numbers cannot
decrease.

Node Profile Specification

2-12

The encoding of a property element is defined using the cfg:encoding at-
tribute. If omitted the encoding defaults to LITERAL (parsed character
data) as specified in the DTD.

2-5-4 Issue

Like directories and files in a file system, resource and property ele-
ments can be timestamped. This is achieved by assigning elements an
issue number with the cfg:issue attribute.

<vmware cfg:issue="20010402130248">
<encrypt cfg:issue="20010402130132">no</encrypt>
<samba>yes</samba>

</vmware>

The value of the cfg:issue attribute is just a simple number. The format
of the issue number is an increasing numeric sequence constructed
from the date/time of the change, that is: CCYYMMDDhhmmss.

This attribute is not mandatory so the client node should interpret any
element missing one as inheriting the timestamp of its parent and if
there is no timestamp up the whole tree to the root node the timestamp
is taken to be now (i.e. the elements timestamp would always be the
current time), so in the above example the timestamp of the samba prop-
erty would be the same as the timestamp of the vmware resource. The
timestamp of a property cannot ever be more recent than that of its con-
taining resource, as in the encrypt property above.

2-5-5 Derivation

The derivation of a resource or property element describes how the
value of that element was obtained from the high level description. Es-
sentially it is a list of classes. Primarily used for debugging purposes.

The derivation of any particular element can be recorded using the
cfg:derivation attribute. The actual value of the attribute is open and not
part of this specification.

2-5-6 Template

The template of a resource or property element is for custom extension.
Initially it is used only to encode some additional mapping for LCFG
ported resources (specifying how to reconstruct tagged entries).

The description of an element can be assigned using the cfg:template at-
tribute. The actual value of the attribute is open and not part of this
specification.

This is a temporary attribute required for the adaptors of the existing
LCFG resources. It is unlikely to appear in the final specification.

This is the only circumstance
where multiple instances of the
same element can occur with-
out a container (but they must
each have a context attribute as
specified in the DTD as a re-
quirement).

Node Profile Specification

2-13

2-5-7 Access Control

Access to resource and property elements is controlled by providing a
list of users (or more generally authorization principles) allowed access
to read the resource or property and a list of users (or more generally
authorization principles) denied access to read the resource or property.

The cfg:access attribute is used to control which users can read the re-
source or property element it is applied to. The actual value of the at-
tribute is open and the access control mechanism itself and any inherit-
ance mechanism is undefined and is not part of this specification. The
example below uses a simple inclusion/exclusion list to illustrate a pos-
sible syntax.

<vmware cfg:access="user1:include; user2:include;
user3:include; user4:include">
<encrypt cfg:access="user2:exclude">no</encrypt>
<samba cfg:access="user5:include; user1:exclude">

yes
</samba>

</vmware>

In the above example the default access for the vmware resource and any
property in the resource allows user1, user2, user3 and user4 to read the
elements. However user2 is denied access to read the encrypt property
and user1 is denied access to read the samba property. Additionally
user5 can access the samba property (but no other property in the vmware
resource or the resource itself).

2-5-8 Context Switching

Context switching (handling multiple states on the client machine such
as connected and disconnected operation) is supported by using an at-
tribute holding a literal list of context names for which the value applies
under. Resources and property elements can then be specified with dif-
ferent values for different contexts. The context(s) of an element are de-
fined using the cfg:context attribute.

<vmware>
<encrypt cfg:context="connected">yes</encrypt>
<encrypt cfg:context="disconnected">no</encrypt>
<samba>yes</samba>

</vmware>

In the above example the value of the encrypt property element is de-
pendent on the context (determined dynamically on the client node). A
context can also be applied to a resource element.

Node Profile Specification

2-14

<vmware cfg:context="disconnected">
<encrypt>yes</encrypt>
<samba>yes</encrypt>

</vmware>
<vmware cfg:context="connected">

<encrypt>no</encrypt>
<samba>no</encrypt>

</vmware>

Resource or property elements left out of a specific context apply in all
contexts. In the above if the context state is not connected or discon-
nected the encrypt and samba properties (and indeed the vmware re-
source) would not exist in the profile. This cannot be validated by the
DTD. If a resource or property element can exist in multiple contexts
then the cfg:context attribute is a requirement (the element cannot be
specified without it) and this is specified in the DTD.

Expanded values might often be used in some contexts to supply a
value for a property which is dynamically determined on the client
node (from the system or user environment).

<network cfg:context="home">
<ipaddress>${ISPIP}</ipaddress>

</network>
<network cfg:context="work">

<ipaddress>129.215.1.1</ipaddress>
</network>

The client node can only be in one context state at a time although that
one context state can be made up of multiple individual context names.
For example, if the contexts connected/disconnected and home/work existed
the client node could be in one of four possible context states. An ex-
ample of what the node profile for this might look like is shown below.

<network cfg:context="connected&home">
<ipaddress>${ISPIP}</ipaddress>

</network>
<network cfg:context="connected&work">

<ipaddress>129.215.1.1</ipaddress>
</network>
<network cfg:context="disconnected&(home|work)">

<ipaddress>NULL</ipaddress>
</network>

The nature and syntax of the cfg:context attribute value and mechanism
for specifying multiple contexts is open and not part of this specifica-
tion. The example above shows one possible syntactic convention.

Node Profile Specification

A-1

A Example DTD
Like the XML profile the DTD would also be generated automatically.
However a very small example is included below. The DTD is for vali-
dation of the following resource tree.

• A DISK resource containing a DEVICE property and a PARTITIONS
property represented as a nested resource.
• A PARTITIONS resource containing multiple instances of the PARTI-
TION property represented as a nested resource.
• A PARTITION resource containing a SIZE property and a MOUNT prop-
erty.

Below is the XML for an example node view profile for the above tree
which includes a DTD which validates it.

<?xml version="1.0"?>
<!DOCTYPE profile [
<!ELEMENT profile (disk)>
<!ELEMENT disk (device,partitions)>
<!ELEMENT device (#PCDATA)>
<!ELEMENT partitions (partition*)>
<!ELEMENT partition (size,mount)>

<!ATTLIST partition cfg:name CDATA #REQUIRED>
<!ELEMENT size (#PCDATA)>
<!ELEMENT mount (#PCDATA)>

]>
<profile>
<disk>

<device>/dev/hda</device>
<partitions>

<partition cfg:name="root">
<size>1000</size>
<mount>/</mount>

</partition>
<partition cfg:name="tmp">

<size>250</size>
<mount>/tmp</mount>

</partition>
</partitions>

</disk>
</profile>

Note that the DTD doesn’t define all the attributes, only the single at-
tribute used in the example. Note also that SGML DTD’s do not support
XML-Namespace so the namespace declarations have been stripped.

Full and proper validation is likely to require the use of XML-Schema.

