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Abstract

Typical large infrastructures are currently configured from the information in a central configuration
repository. As infrastructures get larger and more complex, some degree of autonomous reconfiguration is
essential, so that certain configuration changes can be made without the overhead of feeding the changes
back via the central repository. However, it must be possible to dictate a central policy for these autonomous
changes, and to use different mechanisms for different aspects of the configuration.

This paper describes a framework which can be used to configure different aspects of a system using
different methods, including explicit configuration, service location, and various other autonomous tech-
niques. The proven LCFG tool is used for explicit configuration and to provide a wide range of configuration
components. The dynamic elements are provided by the SmartFrog framework.
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1 Introduction

Typical large infrastructures (see [7] for some case
studies) are currently configured from the informa-
tion in a central configuration repository, such as sets
of hand-crafted cfengine [11] scripts, or LCFG [9]
source files. Changes to individual nodes are made
by editing these central descriptions and running the
appropriate tool to reconfigure the node.

As infrastructures get larger and more complex,
some degree of autonomous reconfiguration is essen-
tial, so that individual nodes (and clusters) can make
small adjustments to their configuration in response
to their environment, without the overhead of feeding
changes back via the central repository. For example,
the members of a cluster might elect a replacement
for a failed server amongst themselves, without re-
quiring a change to the central configuration server;
see the example in figure 1.

Explicit Specification:

• Node X must run a print server

• Node Y must run a print server

Policy Specifications with autonomous con-
figuration:

• Any Linux server may run a print server

• Nodes A,B,C,V,X,Y,Z are servers

• Nodes P,Q,R,X,Y,Z are Linux machines

• There must be exactly two print servers

The nodes can decide “among themselves” which
of the eligible nodes actually run as print servers.
If one of them fails, they can re-elect a replace-
ment without a change to the central policy.

Figure 1: Explicit Specification vs Policy Specifica-
tion – an example

Peer-to-peer style autonomous reconfiguration is
already present in several tools, such as ZeroConf
[17] (as used by Apple’s Rendezvous) and other sys-

tems using Service Location Protocols (for example,
[19]). However, a completely autonomous approach is
not suitable for large installations; there needs to be
some central control over the policy under which the
autonomous choices are made; for example, exactly
which nodes are eligible to be elected as a replace-
ment server? There will also be a good deal of con-
figuration information that does need to be specified
explicitly, and there may need to be several differ-
ent simultaneous techniques for making autonomous
decisions.

LCFG [9] is a proven, practical tool for cen-
tralised configuration management of large, diverse
infrastructures. SmartFrog [16] is a flexible, object-
oriented framework for deployment and configuration
of remote Java objects. This paper describes the
architecture of a combined LCFG/SmartFrog frame-
work which uses LCFG to install a complete system
(including SmartFrog) from scratch. SmartFrog com-
ponents on the resulting system are then able to take
control of arbitrary LCFG components and configure
them autonomously, according to policies defined in
the central LCFG configuration database.

This approach allows the configuration of various
aspects of the system to be shifted easily between ex-
plicit central specification, and autonomous control,
using one of several different procedures for making
the autonomous decisions, and performing the related
peer-to-peer communication. No change is required
to the software components that actually implement
the configuration.

The combined framework makes an ideal test
bed for experimenting with different models of au-
tonomous configuration in a real environment. This
paper describes the testbed, together with some
demonstrator applications, including a complete
Grid-enabled (OGSA [15]) printing service, with dy-
namic server re-allocation and failure recovery.

Section 2 describes the background in more de-
tail, including an overview of the LCFG and Smart-
Frog tools, and the motivation towards more dynamic
reconfiguration. Section 3 describes the combined
LCFG/SmartFrog framework. Section 4 describes
some simple example applications, and section 5 de-
scribes the OGSA print service demonstrator.
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Figure 2: The LCFG Architecture

2 Background

2.1 LCFG

LCFG is an established configuration framework for
managing large numbers of Unix workstations. Orig-
inally developed under Solaris (see [4]) using NIS to
transport configuration parameters, the current ver-
sion (see [9]) runs under Linux and uses XML/HTTP
for parameter transport. LCFG acts as an evolving
testbed for configuration research, as well as a pro-
duction system for the infrastructure in the School
of Informatics at Edinburgh University. An older
version is also in use on the testbeds for the Euro-
pean DataGrid Project [1]. LCFG includes around
70 modules for managing a wide range of different
subsystems, ranging from PCMCIA configuration on
laptops, to OGSA web services for Grid farms (see
[5]).

Figure 2 shows the overall architecture of the

LCFG system:

• The configuration of the entire site is described
in a set of declarative LCFG sources files, held
on a master server. These source files are man-
aged by many different people and describe vari-
ous different aspects of the overall configuration,
such as “a web server” or a “laptop”, or a “stu-
dent machine”.

• The LCFG compiler monitors changes to the
sources files and recompiles the source for any
nodes whose aspects have changed.

• The result of the compilation is one XML profile
for each node. The profile defines explicitly all
the configuration parameters (called resources)
for a particular node. This includes the list of
software packages, as well as the values to be
used in all the various configuration files. Given
a repository of software packages, the informa-
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tion in the profile is sufficient to completely re-
construct the node from scratch; LCFG can in-
stall a new machine from the bare metal, or clone
existing ones, using just a profile, and an RPM
repository.

• Client nodes receive a simple notification when
their profile has changed1, and they collect their
new profile using HTTP(S) from a standard web
server.

• The client includes a set of component scripts,
each responsible for a self-contained subsystem,
such as inetd, or kdm. Components are called
whenever any of their resources are changed, and
they are responsible for recreating the configu-
ration files that they manage, and taking any
other necessary action, such as restarting dae-
mons. Note that each configuration file is man-
aged only by a single component, avoiding any
problems with conflicting changes and ordering
of updates.

• The LCFG implementation also contains a sim-
ple monitoring mechanism (not shown in the di-
agram) that returns component status informa-
tion to the server for display on a status page.

Note that there is no one-to-one correspondence
between the source files and the profiles, nor between
the profiles and the components; source files repre-
sent logical aspects of the site configuration2, profiles
represent individual node configurations, and compo-
nents manage particular subsystems of a host.

The architecture of LCFG has many well-
recognised advantages, which are described more
fully in the references, and the basic principles have
been adopted for other systems such as [12]. In par-
ticular, the single source of configuration informa-
tion allows a complete site to be reconstructed from
scratch. This means that the complete configuration
information is always available, and configurations
can be validated before deployment by checking the
source files.

1Clients also poll the server in case the notification is lost.
2Although individual nodes also have node-specific source

files

However, certain configuration information may
only be available on the client node; for example,
a roaming laptop might need to define a new net-
work configuration while disconnected from the main
server; or some information may be obtained from a
dynamic source such as DHCP, or DNS SRV records.
LCFG includes a mechanism known as contexts for
handling simple inclusion of some configuration pa-
rameters from other sources. This is sufficient to sup-
port the above examples, but inadequate for more
extensive dynamic reconfiguration.

2.2 SmartFrog

SmartFrog is a distributed service and resource con-
figuration engine designed to install and manage com-
plex services spread over a number of computing
nodes and other resources. It has been designed
to handle the need for distributed sequencing and
synchronisation of configuration actions, as well as
coping with the complexities introduced by the dy-
namism inherent in such large distributed environ-
ments, such as those introduced by partial system
failure and communication problems.

The SmartFrog system consists of a number of as-
pects:

• A declarative description notation for defining
desired configuration states, service life-cycles
and dependencies between the various service
components, including the work-flows to carry
out the required changes.

The notation provides a number of features that
make it specifically useful for its purpose. It al-
lows the definition of complex structured data
and dependencies, with validation predicates to
provide rich correctness criteria for their use and
modification. The data is defined through the
use of templates, with flexible operators to com-
bine and modify the templates to create the final
desired form for instantiation.

This process may be linked to database queries
or to active run-time discovery services to pro-
vide templates with late-bound and dynamic
configuration models.
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• A component model defining how configurator
components - those which carry out the vari-
ous configuration and other management tasks
on the resources and services - are to be imple-
mented. These may then be deployed and man-
aged by the SmartFrog systems as part of the
configuration work-flows.

A number of useful pre-defined components are
provided as part of the management framework,
to support aspects such as resource and service
discovery, service failure detection, and script
and command execution.

• A distributed deployment and management run-
time environment which uses the descriptions
and component definitions to orchestrate the
work-flows to achieve and maintain the desired
state.

Unlike many configuration systems, the environ-
ment does not merely support a run-once in-
stallation model of configuration - it supports
the use and description of persistent components
that monitor service state and take appropri-
ate corrective action to achieve continual service
availability or other closed-loop control aspects
such as ensuring service-level guarantees.

In addition, there is no central point of control,
no point to act as a bottle neck in the system.
Work-flows are fully distributed and not driven
by a central point. Hooks are available to track
the progress of these work-flows, and to locate
the various management components that are
started as a consequence. Thus a rich set of tools
may be developed that help in tracing, monitor-
ing and managing the SmartFrog run-time sys-
tem.

The SmartFrog system provides a security frame-
work to ensure that all configuration actions are valid
and authorised by an appropriate authority. The
model supports a number of separate security do-
mains, thus ensuring partitioning of responsibility
and limiting accidental interaction between these do-
mains. All configuration descriptions and configura-
tion component code must be signed, and these sig-
natures are checked at all points of the configuration

process to ensure the integrity of the service configu-
ration process.

The SmartFrog system lacks a number of features
that are necessary in a complete configuration sys-
tem, and which are largely supplied by the integra-
tion with LCFG.

The first of these is that SmartFrog assumes that
the underlying resources are already running, com-
plete with their OS image. It provides no help in
taking a node from bare metal to running system.
SmartFrog starts from the assumption that a node
is booted from one of a small set of minimal images
at which point a SmartFrog system could configure
the various services. LCFG provides the capability
to carry out this bootstrap phase.

The second is that SmartFrog is not currently a
complete solution; it is a framework for building such
solutions. For example, it does not contain a reposi-
tory for configuration descriptions, nor does it enforce
any specific way in which configuration descriptions
are to be triggered - these may be triggered by exter-
nal entities (such as the LCFG system) or by config-
uration components executing within the SmartFrog
framework.

Finally, the SmartFrog framework has yet to be
provided with a large collection of service-specific
configuration components - such as ones for config-
uring DNS, DHCP, printers and print queues, and so
on. LCFG, however, has been developed over many
years to provide precisely this collection of compo-
nents. A good integration that allows SmartFrog
components to wrap and use those of LCFG would
provide the best of both worlds.

2.3 Dynamic Reconfiguration

There has recently been a growing recognition that
computer systems need to support more autonomic
reconfiguration (for example, [14]) if we are to build
ever-larger and more complex systems with an ac-
ceptable level of reliability. This requires automatic
reconfiguration, not just of individual nodes, but of
the higher-level roles and interconnections between
the nodes. For example, if a server goes down, it
should be possible to reconfigure another node to
take over this function, and to redirect all the clients
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to this new server. This is possible with the cur-
rent LCFG; some automatic tool could simply make
the appropriate changes to the LCFG source files,
and the whole network could be restructured. How-
ever, this involves a large feedback loop via the cen-
tral configuration server. This provides a single point
of failure and a centralised architecture which is in-
herently unsuitable for very large-scale dynamic sys-
tems. We would like to see a much more distributed
system where the central server could define a high
level policy, and small clusters of nodes could agree,
and change, the details of their configuration au-
tonomously within the limits defined by the central
policy.

In addition to the fault-tolerance example men-
tioned above, load-balancing is another case where we
would like to make transient, autonomous configura-
tion changes that do not really represent fundamental
changes to the static configuration of the fabric; for
example, we might want to stop and start additional
web servers on a number of nodes to match the de-
mand. The central configuration should define the
set of eligible nodes, but we probably do not want to
change the central configuration specification every
time the load changes.

There is also one less obvious advantage in de-
volving the detailed configuration decisions to some
autonomic agent; at present, users (sysadmins) are
forced to specify explicit configuration parameters,
when very often, they only need to specify a more
general constraint; for example it might be necessary
to specify “Node X runs a DHCP server”, when all
that is really required is “There should be one DHCP
server somewhere on this network segment”. This
unnecessary explicitness means that the compiler is
often unable to resolve conflicts between different as-
pects, and manual intervention is required; for exam-
ple, when somebody else removes “Node X”.

2.4 Previous Work

Reference [6] is a report from the GridWeaver project
that includes a thorough survey of existing system
configuration tools, together with an attempt to clas-
sify common features and different approaches. This
report includes a comprehensive list of references to

other system configuration tools which are not repro-
duced here. Very few of these tools even support a
clear declarative description of the desired configu-
ration state, and none provide the ability to specify
high-level policy about the configuration of a fabric
together with a mechanism to enforce it.

Most people will however, be familiar with a num-
ber of specific tools that do provide dynamic recon-
figuration according to central policy; for example,
DHCP dynamically configures IP network addresses
within the range specified by the policy embedded
in the server configuration. There is currently much
interest in more dynamic configuration of network pa-
rameters, for example the IETF ZeroConf [17] work-
ing group aims to:

• Allocate addresses without a DHCP server.

• Translate between names and IP addresses with-
out a DNS server.

• Find services, like printers, without a directory
server.

• Allocate IP Multicast addresses without a MAD-
CAP server.

However, large sites will almost certainly want
to define the policy within which these autonomous
tools operate.

At the opposite end of the scale, there has been
some work on dynamic configuration of specific ser-
vices, particularly web services. Poyner’s paper [19]
is a good example that describes the use of a Ser-
vice Location Protocol (SLP) and a centrally defined
policy to dynamically configure web services for load-
balancing and fault-tolerance.

All the above examples are application-specific im-
plementations, and we are not aware of any attempt
to integrate a generic facility for autonomous recon-
figuration into a general-purpose system configura-
tion framework. The following sections describes
how LCFG and SmartFrog have been combined to
construct an experimental framework that does pro-
vide this ability to apply different policies and au-
tonomous techniques to arbitrary aspects of a system
configuration.
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Figure 3: The SmartFrog/LCFG integration architecture

3 Combining SmartFrog and
LCFG

The integration of LCFG and SmartFrog has been
achieved in the following way (this is shown diagram-
matically in Figure 3):

• The SmartFrog framework has been wrapped as
an RPM that can be installed on any node using
the existing LCFG software installation compo-
nents.

• An LCFG component has been developed to
manage the SmartFrog Daemon running on a
node. This component has two main purposes:

1. To control the life cycle of the SmartFrog
Daemon (typically it will be started at boot
time).

2. To control the list of deployed SmartFrog
components, and their configuration infor-

mation. This allows the central LCFG
repository to control the general policy un-
der which the SmartFrog framework runs.

• Once deployed, a SmartFrog component can take
responsibility for the management of any part of
a fabric. However, SmartFrog does not have the
extensive range of components that LCFG pro-
vides for managing the various aspects of sys-
tem configuration (apache, fstab entries, etc). A
generic SmartFrog -> LCFG adaptor component
has been developed that allows the SmartFrog
framework to interact and control any LCFG
component. This adaptor allows a SmartFrog
component to act as a proxy for an underly-
ing LCFG component. This gives the SmartFrog
framework access to all the configuration capa-
bilities of LCFG.

The SmartFrog framework makes it easy for Smart-
Frog components to perform peer-to-peer interac-
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tions with each other. With the combined LCFG and
SmartFrog framework these peer-to-peer interactions
can lead to re-configurations of the base fabric set-
up by the central LCFG server. There are various
peer-to-peer mechanism built into SmartFrog:

• Service Location Protocols. These allow Smart-
Frog components to automatically discover each
other without the need for any explicit configu-
ration to link them.

• Partition Membership Protocols. These allow
a number of SmartFrog components to declare
themselves as part of a group and have the
framework automatically elect a leader within
the group. If the leader fails, a new leader will be
elected in its place. This is typically used to pro-
vide fail-over for critical services such as DHCP
(The DHCP example is discussed in more detail
in section 4).

• Java Remote Method Invocation (RMI). The
SmartFrog framework provides look-up services
that allow any component to locate any other
component on the network by name. Java RMI
then allows these components to interact, ex-
change information and make decisions about re-
quired fabric re-configurations.

Sections 4 and 5 give a number of examples illus-
trating the practical use of these concepts.

4 Example Applications

The importance of the move from single node con-
figuration to dynamic multi-node coordinated config-
uration can be illustrated by the use of a couple of
examples. The two examples presented here consider
different aspects of dynamic configuration: the first
uses the underlying framework mechanisms to pro-
vide service reliability and failure recovery, the second
examines the use of discovery for automatically and
dynamically adjusting to service location changes.

4.1 Service Reliability

A scenario that frequently occurs is that of a service
requiring a minimum number of daemons to exist on

a collection of servers thereby ensuring a specific ser-
vice reliability level. So, for example, it may be desir-
able for there to be at least two instances of a DHCP
service on a specified collection of servers. This is rel-
atively easily described: a configuration description
would state which servers should hold an instance of
the DHCP daemon. Descriptions of this kind would
be validated to ensure that two are defined.

However server failures do occur, and it is neces-
sary that the failure of a server containing such a
daemon results in the automated re-deployment of
the ”spare” daemon onto another server thus main-
taining the guaranteed service level.

The configuration problem can be described as fol-
lows: it would be best if the configuration description
could be provided as a set of constraints regarding
service replication over a collection of independent
nodes, rather than a fixed static mapping of daemons
to servers. These constraints should be maintained
without needing to define a new static association.

Consider the following base configuration. Each
server of a set of servers is configured with two com-
ponents: a group membership component and a con-
figuration policy engine.

A group membership component is one that uses
a network protocol to decide which of a possible col-
lection of such components (each representing their
server) are healthy and able to run one or more of the
daemons. This protocol must ensure that all servers
that are part of this collection agree on its members.
From this information a leader may easily be elected.

Such protocols are known as group membership
and leadership election protocols, and the SmartFrog
framework contains components that implement such
a protocol. Note that the important difference be-
tween such protocols and simple discovery protocols
is the guarantees of consistency of the information at
all servers.

The policy component is only activated on the
elected leader and, when given the policy (i.e. con-
straints referring to the number of daemon replicas),
allocates daemons to servers in the group so as to bal-
ance load whilst maintaining the constraints defined
in the policy.

If a node should fail, this is discovered by the group
membership protocol and notified to the policy com-
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Figure 4: Service Reliability

ponent, which in turn reallocates the service daemons
as required to the surviving servers. If the leader
should fail, this will be noticed by the whole group
membership and a new leader will be elected. This
component will ensure that the service daemons are
validly distributed to satisfy the given policy.

SmartFrog provides the ability to dynamically de-
scribe and manage the configuration requests for the
daemons, as well as providing the core components
to handle the group communication. LCFG provides
the ability to configure the initial collection of servers
with the SmartFrog infrastructure, the initial com-
ponents and, if necessary, the policy description. It
also provides the low level components to configure
services such as DHCP, DNS, printing, e-mail, and

so on that will be triggered by SmartFrog as services
are moved around between the servers. Figure 4 il-
lustrates these concepts.

4.2 Service Location

The second scenario consists of reconfiguring a sys-
tem as services move, using a simple service location
protocol such as the IETF protocol[18] described in
RFC 2165.

A set of Linux file servers offer a set of possibly
replicated read-only file systems to a very large col-
lection of Linux client machines via NFS. Each client
may require its own unique set of mounts selected
from this possible set. Furthermore each file system
may be offered by a number of different file servers,
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Figure 5: Service Location

with the servers allocated so as to satisfy require-
ments for reliability, load-balancing of read-requests
and storage capacity.

The configuration problem is as follows: although
the overall configuration specification for the system
may contain the mapping between file-system and
server, plus each client’s requirements for mounting
the various file-systems, changes to the allocation of
file-systems to servers may result in many thousands
of updates to client machines. These updates would
be to modify the automounter settings to mount the
correct file servers.

Unfortunately, this is not best handled by push-
ing these changes to the client machines from some
central point as this provides limited scalability and
dynamism3. A better approach might be to config-
ure a service location component in every client, and

3Using LDAP or NIS for the maps would create a single
point of failure in the master database server, and would not
solve the problem of updating the maps when a server fails or
appears.

a service advertising component into every file server
and allowing the distributed service location proto-
cols to resolve the binding between them.

Thus a server would be configured to advertise its
own file systems. A client would be told which file
systems to locate and prepare an automounter entry
for this. Any change of association between server
and file-system is then only made on the server and
the clients ”discover” the new bindings through the
location protocols. If more that one server offers ac-
cess to a specific file system, a number of options
exist. A server could advertise itself as the preferred
server, in which case the client would select this one
in preference. If all servers are equal, a random
choice could be made by the client thus spreading
load amongst the various servers.

Finally, if a server disappears or communication
problems exist between the client and the server (this
could be monitored by the client configuration com-
ponents, for example by scanning log files) a binding
to an alternative server could be made. Thus a local
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decision can be made to resolve a locally identified,
localised problem.

Within the combined LCFG/SmartFrog environ-
ment, this would be carried out in the following
way. LCFG contains the basic components to han-
dle NFS servers, configuring the automounter, and
so on. SmartFrog provides the appropriate service
location and advertising components, using a encap-
sulated implementation of the SLP protocol. Con-
figuration descriptions would be created that define,
for each server and client, the set of file systems they
hold, or require. The SmartFrog system would then
dynamically instantiate the completed service, using
the LCFG components for the specific node configu-
rations. Figure 5 illustrates these concepts.

5 The GPrint Demonstrator

The GPrint demonstrator is a complete, self-
contained cluster that provides a robust printing ser-
vice via an OGSA interface. This has been developed
as part of the GridWeaver project and is described
more fully in [10]. It illustrates how the combined
LCFG and SmartFrog frameworks can be used to pro-
vide a robust printing system that can automatically
adjust for print server or printer failures. A short
video is available[20] on the web, which demonstrates
the GPrint system in action.

The underlying printing system is based on LPRng
[3]. The key goals of the system are:

• Fault tolerance - no single point of failure com-
bined with autonomic reconfiguration when any
part of the system fails.

• Minimal management - e.g. to deploy a new
print server it should simply be a matter of plug-
ging the node into the network and deploying
a print server configuration description to the
node.

• Illustrate how the configuration system can inte-
grate with the Globus Toolkit and OGSA stan-
dards [15] to provide a robust grid enabled ap-
plication.

The design of the system is illustrated in Figure 6
and explained further below:

• LCFG provides components to manage the
LPRng printing daemon. These components
have been used though they are managed by
SmartFrog using the SmartFrog -> LCFG adap-
tor.

• A SmartFrog component has been developed to
represent a print server. Using LCFG, this com-
ponent can be deployed on any node. Once
deployed, the component advertises the print
server using SLP. The rest of the printing system
listens for these advertisements and deploys the
printing services across the available resources.

• A SmartFrog component has been developed
that can scan a range of network addresses for
printers. Once a printer is found, a proxy Smart-
Frog printer component is deployed to repre-
sent the printer to the printing framework. This
component performs heartbeat monitoring of the
printer and advertises the printers existence us-
ing SLP.

• The brains of the system is a SmartFrog print
manager component that listens for the print
server and printer announcements. This compo-
nent is configured with a list of the print queues
that are to be made available to the end users
of the printing system. It deploys these queues
based on the currently available resources and
will reallocate the queues if any part of the sys-
tem fails.

The SmartFrog leadership election protocols can
be used to deploy multiple print server managers
on different nodes. Only the currently elected
leader will perform any system configurations.
The other copies are there to take over if the
leader node fails. This prevents the manager
component from becoming a single point of fail-
ure in the system.

• When the print server manager deploys a print
queue, this involves deploying a SmartFrog
Queue component onto the appropriate print
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Figure 6: The GPrint Demonstrator

server node. As well as configuring the queue,
so that it can print, this component advertises
the queue’s existence using the SLP protocol.
This allows any interested network components
to be notified of the current printing configura-
tion. In the full GPrint system, an OGSA por-
tal has been developed which allows print jobs
to be submitted through a Grid style interface.
The GPrint portal listens for the print queue an-
nouncements and advertises the available print
queues through its OGSA interface.

Note that the entire GPrint cluster can rebuild
from “bare metal” machines, using just the config-
uration specifications and an RPM repository. Like-
wise, new nodes of any type can easily be installed
and incorporated into the cluster.

6 Conclusions

Future configuration systems will need to incorporate
a high degree of autonomy to support the anticipated
need to scale and demands for robustness. In prac-
tise, this is likely to require several different config-
uration paradigms, such as explicit specification, or
discovery by service location protocol.

We have shown that it is possible to build a config-
uration framework that allows different paradigms to
be incorporated easily, without changes to the com-
ponents that actually deploy the configuration. The
prototype implementation of this framework provides
a testbed for experimenting with different configura-
tion paradigms using real, production configurations.

We have also demonstrated that the framework can
be used to construct a typical real service with au-
tonomic fault-recovery. The service can easily be re-

12



structured to support different modes of configura-
tion.
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