
University of Edinburgh
School of Informatics

A GUI Interface for LCFG

4th Year Project Report
Computer Science

Craig Devlin

June 6, 2003

Abstract: It has long been realised within the UNIX community that there
are no efficient tools for managing and maintaining the configuration of large
numbers of machines. LCFG has been designed to address this problem and is
currently used in the School of Informatics at Edinburgh University. This paper
describes the process from conception to completion of creating a GUI to enhance
user productivity and comprehension when writing LCFG source files.

Acknowledgements

Carwyn Edwards for his introductory lecture on LCFG.
Paul Anderson for his initial briefings on the problem definition and the archi-
tecture of LCFG.
Lex Holt for his advice and assistance throughout the year.
Martin Murgh for his ideas on how to define the problem.
Kings Buildings Support Staff for their appraisal of the system and for helping
me to come up with a list of extended features.
Volunteers for appraising the ‘look and feel’ of the user interface.

Contents

1 Introduction 1
1.1 Introduction . 1

1.2 Context and Background . 2
1.2.1 Current Deployment . 2
1.2.2 Architecture of LCFG . 4

1.3 Need for a GUI . 8
1.4 Synopsis . 9

2 Initial Development 11
2.1 Aims and Objectives . 11

2.2 Background Information . 12
2.3 High Level Solution . 14
2.4 Testing and Evaluation of Proposed Solution 18
2.5 Similar Systems . 19
2.6 HCI Research - Summary . 19

2.7 Detailed System Design . 20
2.7.1 Parser Module . 21
2.7.2 GUI Module . 23
2.7.3 DBM Module . 25
2.7.4 Input/Output Module . 26

2.7.5 Timetable . 27

3 Implementation 29
3.1 Revision of Aims and Objectives 29
3.2 Revised Timetable . 31
3.3 Revised Systems Design . 32

3.3.1 Parser Module . 32
3.3.2 GUI Module . 33

3.3.3 Input/Output Module . 34
3.4 Procedure Description and Data Flow 35
3.5 Intermediate User Feedback and Actions Taken 41
3.6 Additional Features Implemented 41

4 Testing and Evaluation 43
4.1 Testing Results . 43

4.2 Evaluation of the System . 45
4.3 Lessons Learnt . 46
4.4 Extensions, Improvements and Documentation issues 47

v

5 Conclusions 49

Bibliography 51

Appendix A A–53

Appendix B B–58

Appendix C C–65

Appendix D D–67

1. Introduction

1.1 Introduction

Managing large networks of computers is a difficult and continuous process: net-
works constantly change and adapt to meet new requirements. This process not
only encompasses the addition and removal of nodes but also the configuration -
both software and hardware, of each individual machine. This task is difficult as
it stands but as the number of machines increases how can a correct and up to
date network be maintained without increasing the human resources available?
Obviously there is need for some form of network management system that al-
lows direct and precise control of nodes whilst at the same time automating the
configuration process usually done manually.

Local ConFiGuration system (LCFG) 1 is a system designed for automatically
installing and managing a large number of UNIX machines. Development started
on this project in 1993 by Paul Anderson at the University of Edinburgh. This
initial version ran under the Solaris operating system. LCFG was then ported over
to the Linux2 Currently LCFG is used in the Distributed Informatics Computing
Environment (DICE) at the University of Edinburgh and also a variant of the
LCFG system is used as part of the European DataGRID project. The above
projects I will go on to explain in further detail shortly.

Currently machines are configured by receiving a set of configuration details from
a central server, the configuration details are edited from this central point. Each
machine has its own set of configuration details known as a source file. These
source files detail the hardware, software and miscellaneous information about
the machine, making LCFG particularly suited to networks with very diverse
and continuously changing environments. Currently each source file is manually
created through a text editor package (emacs seems to be the text editor of choice)
then saved as a plain text file.

Since creating these source files can be difficult and confusing, the aim of this
project was to develop a Graphical User Interface that will allow quick and easy
creation/modification of source files even for users with little experience at devel-
oping these files. By structuring the way in which the user selects configuration

1http://www.lcfg.org
2A freely-distributable open source operating system that runs on a number of hardware

platforms. The Linux kernel was developed mainly by Linus Torvalds. Because it’s free, and
because it runs on many platforms, including PCs and Macintoshes, Linux has become an
extremely popular alternative to proprietary operating systems. operating system in 1998 and
has since undergone several developments and changes [8].

1

2 1. INTRODUCTION

details and by presenting the user with a list of viable options for each configu-
ration details that the above aim can be realised.

1.2 Context and Background

1.2.1 Current Deployment

1.2.1.1 DICE

LCFG is currently used as part of DICE at the University of Edinburgh3. The
DICE project is a recent development in the School of Informatics, taking the
best parts of the previous system and merging them with state of the art infras-
tructure components. The DICE architecture grew out of discussions amongst
the original DICE project group (Paul Anderson, Jeremy Olsen, Alastair Scobie,
Simon Wilkinson, with Tim Colles, Lex Holt and George Ross joining the group
later). The first stages of DICE integration started 2002, and with the full system
to be put into operation in 2004.

The driving factors behind DICE development are (from [1]):

• Maintainability and low Total Cost of Ownership

• Mobile and disconnected operation

• Distributed and devolved management

• Improved internal security

Maintainability and low Total Cost of Ownership are especially important to the
DICE system. The DICE system covers machines within the School of Informat-
ics these range from desktops, servers, laptops student lab machines and a great
deal more. With such a diverse range of machines a state of the art configuration
management system is needed to keep machine configurations up to date. Also
the configuration management system will need to make the process of initially
configuring and updating these configurations as quick and efficient as possi-
ble.Reducing duplication of user and system data so that there is only one source
for each type of information will drastically simplify management tasks. Mobile
and wireless devices are becoming ever popular and as a result the DICE system
induces giving both wired and wireless mobile devices access to the network.

Distributed and Devolved Management will allow more than just systems staff
to manage machines without reducing the security of the rest of the machines.
Multiple levels of trust are needed in such a system to allow the configuration

3http://www.dice.informatics.ed.ac.uk/

1.2. CONTEXT AND BACKGROUND 3

system to allow different users to be able to change parts of the configuration
information whilst at the same time maintaining stability of both the machine
and the network. To achieve the above will require a powerful internal security
system and as such is a priority in the development of the DICE system.

The DICE architecture is based around 4 directory services with each service
fulfilling a separate role. These are (from [1]):

• LDAP4 contains anonymously accessible, locally available information about
the DICE system. This includes the information formerly held in NIS, some
host based information such as ssh keys, and other information which is re-
quired to be available to a majority of machines on the DICE system.

• KDC contains Kerberos5 specific information. This includes usernames,
their passwords (in a hashed form), and Kerberos management data. This
directory must be maintained in a secure fashion, with only authorised
access.

• LCFG contains machine configuration information. This is machine spe-
cific information (a machine only has access to information about itself).
Currently read access to LCFG information is locally available, write access
is restricted to authorised users.

• DNS contains globally, anonymously accessible, machine information. This
may include items such as server location information.

1.2.1.2 European DataGRID

The idea of a data grid dates back to the first half of 1990. The vision behind them
is often explained using the electric power grid metaphor - hence the name grid.
The electric power grid delivers electric power in a pervasive and standardised
way. You can use any device that requires standard voltage and has a standard
plug if you are able to connect it to the electric power grid through a standard
socket.

As explained by Ian Foster and Carl Kesselman in Chapter 2 of their (famous)
book “The Grid”:

“The current status of computation is analogous in some respects to
that of electricity around 1910. At that time, electric power genera-
tion was possible, and new devices were being devised that depended

4Lightweight Directory Access Protocol, a set of protocols for accessing information direc-
tories. access.

5Kerberos is designed to enable two parties to exchange private information across an other-
wise open network. It works by assigning a unique key, called a ticket, to each user that logs on
to the network. The ticket is then embedded in messages to identify the sender of the message.

4 1. INTRODUCTION

on electric power, but the need for each user to build and operate a
new generator hindered use. The truly revolutionary development was
not, in fact, electricity, but the electric power grid and the associated
transmission and distribution technology”

The DataGrid project6 is funded by the European Union and is aimed at enabling
access to geographically distributed computing power and storage facilities span-
ning several different European institutions. The resources made available by
this project is necessary to process the vast amount of data generated by the
scientific disciplines of the following three areas:

• High Energy Physics (HEP), led by CERN (Switzerland),

• Biology and Medical Image processing, led by CNRS (France),

• Earth Observations (EO) led by the European Space Agency

No single institution could afford to buy and maintain all the computing power
and storage on its own and demands on resources are always increasing. Dis-
tributed computing practices can solve this problem by utilising the combined
resources of all the institutions thus providing the required performance and
scale. The distributed computing environment also encourages the sharing of
data throughout scientific communities throughout the world.

Distributed networks like this are no simple task to implement. Making all of
the resources seem uniform and transparent to the operator pose many chal-
lenges. The geographical location of the resources is a consideration as is the
varied hardware and software that each institution possesses. Each institution
will have its’ own security policies and somehow the Distributed system must
be able to coordinate the local security procedures into one global transparent
user protocol. Finally once the operator has access to these resources we need
to utilise them in an efficient manner by coordinating each institutions resources
and hence providing effective and dependable data.

1.2.2 Architecture of LCFG

To complete this project a thorough understanding of LCFG’s architecture is
required. The architecture itself is modular and extensible and so both the client
and server sides are easily upgraded. This is an important aspect of LCFG
as updates to the system will happen frequently. On the server side LCFG is
used to specify machine configurations through the use of source files - more on
this later. Additionally there are the compilers to do both error checking and
conversion of the source files into a machine profile that can be understood by

6http://eu-datagrid.web.cern.ch/eu-datagrid/

1.2. CONTEXT AND BACKGROUND 5

Compiler
mkxprof

LCFG
Source
Files

Webserver

Profile

Compiler
rdxprof

HTTP XML
Profile

DBM
Database
Manager

Generic
Component

LCFG
Components

Figure 1.1: Overview Of LCFG Architecture

the client machine. On the client side LCFG initiates retrieval of profiles from
the server, is responsible for updating software, booting and installing hardware
and software. The client nodes contain LCFG ‘components’, these ‘components’
use the profile received from the server to create a local configuration. In other
words (by the man who initially started the LCFG project):

“LCFG provides a configuration language and a central repository
of configuration specifications, from which individual UNIX machines
can be automatically installed and configured. Changes to the cen-
tral specification automatically trigger corresponding changes in the
actual configuration of individual nodes. The system is particularly
suitable for sites where the configurations are very diverse (ranging
from large servers to laptops), and different aspects of the configu-
rations may be changed frequently, and managed by many different
people. LCFG scales to at least medium-size 1000 nodes.”

[6]

6 1. INTRODUCTION

rdxprof

Notify (UDP)

ACK

Web
Server

Central
Server

DBM
FileSystem

HTTP

XML Profile

Figure 1.2: Detail of XML file transfer over UDP

LCFG works by keeping a central store of source files, these source files do not
necessarily represent one machine they may instead describe an aspect of the
overall configuration. These aspects may include things like parameters specific to
student machines or parameters specific to machines within a single geographical
location. There are also source file aspects for each of the types of hardware
and software available. What this means is that at the lowest level a machine
source file will call several other source files depending on the machines setup,
these source files may then to go on to call yet more source files and so on.
The benefits of this hierarchical approach are that because there is only one
copy of each source file all machines with common aspect files are updated along
with that single aspect file. Hence the machines will all use the same up to date
configuration information and also the time spent updating machine configuration
is dramatically deceased when compared to manually installing.

Once the source files are completed they are then compiled using the mkxprof
(make XML7 profile) compiler. This results in the creation of a profile - one
per machine, this machine profile provides all the information the node needs to
configure. The profile contains all the information that makes a machine unique.
The profile is in XML format, this is to make transport of the profile to the
client and subsequent interpretation easy. The XML profile is transported from
the webserver over HTTP to the client, it also possible to implement security
features via the use of the TLS (Transport Layer Security) layer of the IP (Internet
Protocol) protocol.

7Extensible Markup Language used for enabling the definition, transmission, validation, and
interpretation of data between applications and between organizations.

1.2. CONTEXT AND BACKGROUND 7

When a profile is updated the affected machine is sent a UDP (User Datagram
Protocol)8 notification. The client machine then retrieves the profile from the
web server over HTTP and stores the information in the DBM (database file).
The clients also periodically poll the server to check for new configurations, this
is in case the UPD message is lost. The client will also send a UPD acknowledge-
ment packet indicating that it has updated its state, this is so that the server can
maintain up to date status information on all the client nodes. Lastly the com-
ponent modules inside the client interpret and act appropriately on the received
profile. Each component module has a corresponding section in the profile on
which to act.

Not all machines have the same components installed. The components depends
on the hardware, software and purpose of the machine. Currently there are
around fifty components. Some examples of components are:

• Mailng - sendmail

• Xntp - time service

• Vmware - vmware

• DNS - DNS configuration

• Lpd - printer

• Apache - web service

• Postgres - database

1.2.2.1 Source Files

This project is based solely on the server side, the GUI will generate source files
which will then be compiled into profiles and sent to the client. As a result a
closer look at the structure and usage of the source files is required.

Appendix A shows some example source files.

The #include(. . .) statement is called to include the relevant header file. Header
files implement a simple form of inheritance and take all the configuration details
from the relevant file and add it to the source files. Of course #include(. . .)
statements may lead to source files being nested inside each other. The header
files are grouped together by type (for example operating system or hardware
platform) and placed in group directories. In machine source files there are cer-
tain selections that are mandatory, for example a machine must have an operating

8Abbreviated UDP, a connectionless protocol that runs on top of IP networks. UDP/IP
provides very few error recovery services, offering instead a direct way to send and receive
datagrams over an IP network. It’s used primarily for broadcasting messages over a network.

8 1. INTRODUCTION

system and as a result must include a header file defining this property. Infor-
mation contained in a header file can be overridden in the source file through the
use of mutation. Mutation can be used to transform any inherited resource value
through the use of a regular expression that makes it easy to prepend or append
items to a standard inherited resource without having to override the specifica-
tion for the standard machine. Mutation is a very powerful tool but can lead to
confusing and less central machine configurations and so its use is restricted to a
few will-defined macros [3]

The MAC address, short for Media Access Control address is the hardware ad-
dress that uniquely identifies each node of a network. The MAC address in
source files is identified by the dhclient.mac statement. Inventory information is
detailed in statements beginning inv.* these describe the various admin details
for the machine such as who can access it and who is responsible for it. There
are - understandably, a great deal of different options for use in source files. The
above only touch on the most frequent.

Header and source files are very different in structure and contents. Machine files
have more of a regular structure and somewhat predictable contents as opposed
to header files which are very much different from one another. Machine files
tend to be less complicated than header files, although comments throughout
both sets are sparse.

Initially I didn’t have access to the source files, they were made available (through
the use of) the Rsync command. Rsync is a tool for efficiently transferring files
across a network and enabled me to copy across the appropriate source files to
examine. The directories I needed were:

• lcfg :: lcfgdefs

• lcfg :: lcfginf

• lcfg :: lcfgpacks

• lcfg :: edpacks

1.3 Need for a GUI

As mentioned above there are a great many options to consider and lot of in-
formation to remember when writing an LCFG source file. New Source files are
written either from scratch or from an existing template file through a text editor
such as emacs. Existing source files are again edited through an appropriate text
editor. Experienced users find it sometimes difficult to alter or create source files.

1.4. SYNOPSIS 9

Even with the help of the template file the job is not necessarily made any easier
as the template only covers the most basic machine configurations.

Another issue is that through the years it is apparent that many different people
have edited the source files and as a result there are many different files that
do perform similar configuration operations but look completely different. Com-
menting throughout the source files is sparse and sometimes more confusing than
helpful. There is also a common situation where files have been modified with-
outthe comments being changed to match. Also it is easy to make mistakes when
using a standard word processor and these mistakes will not become apparent
until the mkxprof compiler detects the error.

Currently there is no way for someone other than an experienced user who is
familiar with LCFG to make modifications to machines on the network, other
than by using the limited template file. By designing and implementing a GUI for
LCFG I will enable novice users to change machine configurations without having
an in depth knowledge of how an LCFG source file is constructed, especially in
terms of syntax and command options. The GUI itself should make creating a
new source file from scratch easier by providing a structured sequence of steps
for the user so that no mandatory details are left out and by getting the user to
select item from a list rather than typing the number of mistakes will be reduced.
An added advantage is that all source files created in the way will be uniform
and similar in both style and structure and as a result will be easier to interpret
when viewed at a later date.

Editing a source file will also be easier as the GUI will display a list of valid
options for the user to choose from and hence will speed the editing process up
and reduce the chance of error.

Creating this GUI will simplify the more mundane tasks of writing LCFG source
files and will reduce the number of mistakes made. At the same time refining all
of the source files into a common and easily understandable format.

1.4 Synopsis

This project was started October 2002 and ran throughout the academic year
(ending May 2003). The purpose of this document is to describe not only the
system I have developed but also the problems and intermediate stages that have
been faced over the last year. There is obviously a great deal of work to be
covered and I have presented it here in the form I think most suited to give the
reader both a chronological sense of the developments that took place and also
demonstrate the development process driven by the goals and aims initially set
out in the next chapter.

10 1. INTRODUCTION

Chapter 2 provides the reader with an in depth view of the problem and lists the
aims and objectives that were key in the development process. This chapter also
covers the first development phases and culminates in a detailed description of
my initial design for the system.

Chapter 3 details the implementation phases of the project. The chapter contains
a revision of goals and objectives that were realised in the later stages of the
project and as a result of these goal changes the chapter includes a detailed
description of the new design solution.

Chapter 4 details the later stages of the project and includes the results of testing
and evaluation of both the system and the development processes used during
the cycle of the project.

Chapter 5 is the concluding chapter of this report and summarises the lessons
learnt and the degree of success of the project.

2. Initial Development

2.1 Aims and Objectives

To drive the project forward and to keep on track a clear definition of the task
needs to be formed. The best way to do this for this type of project is to formulate
a list of aims and goals ordered by priority. The aims are divided up into three
categories: basic,extended and advanced. Those aims in the basic category are
those that should be fulfilled for my system to work. Extended aims are those
which i believe are attainable given the time and resources available. Advanced
aims are those which I believe may not be possible given the current time and
resource available but will be worked toward if all other aims have been satisfied.

At this stage there is no concrete vision of the form that the project will take but
laying down a set of aims at this stage means that the project will have to be
designed around these aims. Rather than writing the aims after a solution has
been thought of and tailoring the aims to reflect that solution. However some
aims may not be achievable once further investigated at a later stage, if this is
the case the aims will be revised and a case for the revision will be made. Also
some aims were added as new information came to light again the reasons for
any revision of aims will be made clear.

At this stage it is clear that some form of graphical user interface will need to
be developed but underneath this top layer there will need to be some way of
interpreting the source files so the user can edit them and also a way formatting
the data selected by the user into a source file and outputting it to the appropriate
directory.

Aims and Objectives : (objectives being concrete milestones which can be
verified, e.g. production of a program which can be demonstrated to perform a
specific task)

Knowledge Based Aims:

1. To have an understanding of the architecture of LCFG

2. To have an understanding of LCFG source files

3. To learn to program in Perl

The measure of success of the above aims can be determined implicitly through
the design and implementation of the GUI developed and also from the infor-
mation contained in this report. Without achieving the above three aims it is
impossible to complete this project.

11

12 2. INITIAL DEVELOPMENT

Practical Based Aims:

1. The production of a program that will serve as a GUI interface for LCFG

2. To design the user interface so that it user friendly

3. To design the user interface so that it will enable a novice user to create/edit
LCFG source files

The above aims are meant in a high level context, further goals and aims for
measuring the success of the implementation will be presented shortly. The aims
above will be satisfied if there is some system developed by the end of the project
that will allow a novice user to create and edit an LCFG source file through the
use of a GUI.

Evaluation Based Aims:

1. To gradually introduce the system developed and gain feedback from real
users

The above will be satisfied if throughout the lifespan of the project regular eval-
uations are made of the system by both myself and real users.

All of the above knowledge, practical and evaluation aims are basic ones and
should be completed for the project to prove successful.

2.2 Background Information

To complete the above knowledge aims information will have to sought out (and
read). Below are the types of information that need to be understood along with
probable sources.

What background information will be sought and from where:

1. How to program in Perl: Sources from books and Internet

2. How to program the GUI: Sources from Books and Internet

3. Understanding LCFG architecture: From LCFG documents, Staff familiar
with the LCFG system

4. Understanding LCFG source files: LCFG documents, time spent examining
the files and staff familiar with LCFG

5. How to design an effective GUI: Books and also advice from Staff familiar
with Human Computer Interface design

2.2. BACKGROUND INFORMATION 13

At the start of the project there was a vast amount of information to digest.
Certain documents from the LCFG website 1 were particularly helpful but took
a long time to understand, others were less relevant but gave me a wider un-
derstanding of the structure of LCFG. I found the meeting I attended presented
by Carwyn Edwards especially helpful in developing my understanding of the
architecture of LCFG and also gave me a better understanding of the scope and
ways in which to go about starting to design the GUI. Further meeting with Paul
Anderson and Lex Holt of the School of Informatics allowed me to further grasp
the architecture of LCFG and to begin to formulate several ideas as to how to
go about designing the GUI. Initially when trying to gain an insight into the
way in which LCFG works I spent some time trying to understand the client
side component files an endeavour which was ultimately fruitless as my system is
entirely based on the server side and studying the component files furthered my
understanding of LCFG very little.

The decision was taken early on to use Perl as the language to develop the
system with Perl/Tk2 to be used for developing the GUI interface. With no prior
Perl or Perl/Tk experience I began learning the language from scratch. The
books [11] and [12] have been invaluable during the lifespan of the project.
Initially I found it necessary to progress right the way through [11] to give me
a sufficient background in Perl to be able to approach the problem. I also used
several Internet based Perl tutorials which although not nearly as helpful still
reinforced the lessons learnt from the book. I also spent some time developing
sample programs to make sure that my understanding of Perl was adequate. This
process took a long time but I felt that if I was to be developing a large amount
of code in Perl it would save time later if my understanding of the Perl language
was sound right from the start.

On the GUI programming side not only had no Perl/Tk experience and very
little GUI programming experience in general with only a limited knowledge of
Java Swing under my belt. The Internet was not nearly as helpful as I would
have hoped it to be, the tutorials were often far too limited to be of any practical
use beyond building an Interface with two buttons. The [10] book however is
both an excellent way to learn Perl/Tk and also as a reference book. However
given the size of the book it is not really possible to read all the way through as
I had done with [11] and so I found myself constantly referring to it all the way
through the project. Again it took a long time to familiarise my self both with
GUI programming and additionally GUI programming in Perl/Tk.

I also did a lot of background reading as to how to go about designing the user
interface. However I found later on that this material was less useful than I

1http://www.lcfg.org/doc
2Perl/Tk adds the Tk GUI application libraries onto Perl. Thus making it possible to

develop graphical user interfaces

14 2. INITIAL DEVELOPMENT

thought it would be as the design of this system has to come down to a functions
grouped by type and then using a little common sense to decide on the placement
within the GUI.

An outcome of the initial meetings was the decision that the size of the project
would not be big enough to warrant a full scale software engineering approach to
the software development cycle. However it was still necessary to follow several
software engineering practises to better structure and document my code.

2.3 High Level Solution

The prospect of designing the system was overwhelming at first and the more I
thought about designing a solution to the problem the more questions came up.
My main group of questions to be answered were:

• What information do I need to represent?

• How am I going to parse the source files?

• How am I going to generate the source files once the user has chosen to
save?

• What is the GUI going to look like?

• What differences will there be between editing machine source files and
header files and how will these be represented?

The answers to these questions generated a great deal more questions and a long
time was spent planning and fleshing out all the details. Essentially this brain
storming approach allowed me to visualise the functions that my system needed
to perform. Even if I didn’t have a clear idea of how I was going to implement
the system at least I now had a clear idea of the things that the system should
be doing.

Examples of the types of questions that arose from the brainstorming: “our
current LCFG system supports over 2000 parameters” [6]
Which ones should I think about changing first? I.e. which ones are the most
heavily used?

“25% of which (parameters) routinely vary between different systems” [6]
OK so that cuts things down from 2000 to 500, that regularly change. Chance
for code optimisation here?

The overall architecture for the system was established using the questions gen-
erated in the brain storming as guidelines for functionality. This architecture was
very abstract in nature but then gave me a framework from which to work from.

2.3. HIGH LEVEL SOLUTION 15

Parser
Module

I/O
Module

GUI
Module

DBM
Module

Startup

Figure 2.1: Overview Of Design Solution

The above diagram was the final design in this initial design stage and as a result
is very likely to change as new information comes to light. It is clear that the
architecture of the system can be divided up into four distinct areas.

• The GUI itself

• The source file parser

• The Database system (DBM)

• The Input/Output system

On start up the I/O module will scan through all the available source files and
then to the parsing module which extracts all the information into a format that
can be stored in the database. Once this information has been extracted - I
am expecting this process to take some time as there are a great many source
files, the data is passed onto the database manager which stores all the source
file data. The source files will only have to be parsed once as the DBM is a
persistent form of storage and so does not lose all its data when the program is
terminated. There are several issues associated with database correctness which
shall be covered shortly. At this point there is a store of source file data that is
in an easily retrievable format.

Up until this point there has been no user interaction apart from telling the
program to start, now the user must select what they want to do, this will be
one of three actions:

1. Edit a machine configuration

16 2. INITIAL DEVELOPMENT

Start
Up

DBM Set up
With Info

From Source
Files

User Selects
Which

Machine
or Aspect to

Modify

Quit

DBM
Search

Display GUI/
User Editing

Backup
Old

File

Create and
Save New

Source File

Scan/Parse
Source Files

Data Fed
To GUI

Quit

Config
Info
Requested

Quit

Config
Info
Returned

Save
Config

Old File
Copied

New File
Written

Figure 2.2: System Data Flow

2. Edit an aspect file

3. Create a new source file

If the user selects actions one or two then the will select which source file they
wish to edit through some GUI representation the details for this source file will
then be fetched from the DBM module. This information will then be fed back
to the GUI and the details will be displayed in a way so that the user can easily
edit them. If the user selects action three then a blank configuration screen is
displayed. Once the user has finished editing or creating the source file they will
want to save. Selecting save will cause the new source file details to be sent to
the I/O module where the information is converted into a format that represents
a source file and written into the appropriate directory. At the same time the
DBM is also updated with the new source file details.

The above flow diagram shows the flow of data from start-up until the user is
finished.

Other initial design decisions included taking a modular approach to the imple-
mentation of the system, to begin with a basic system is developed and then
progressively more features will be added. The order that these features will be
added will depend on the feedback from the real users.

2.3. HIGH LEVEL SOLUTION 17

From looking at the source files it was immediately apparent that there would be
a huge amount of work to do if I hoped to parse all of the details as mentioned
above there are around two thousand parameters. Writing a parser to deal with
this seemed infeasible given the time constraints and the fact that there would
be three other architectural sections to design and implement. After discussions
with Paul Anderson and Lex Holt, it was agreed that a total parsing of the system
would not be possible and so I should look to parsing the important details and
find another way of representing the un-parsed information to the user.

From looking at the spectrum of tokens used in LCFG and in fact how they are
used within the source files it was apparent that some features would beharder
to implement than others in terms of both parsing and graphical presentation.
The MAC address for example is only one line, will be quite quite easy to parse
and will require only one entry field to alter. Disk partition will be difficult as
there are a large range of commands on many different objects, it will also be
difficult to represent in a graphical way - many user inputs will be required. Hard
disk partition is far less regularly used with around 80 machines, as compared to
MAC address in which almost every machine uses.

Still on the subject of the parser it was apparent that I would need to spend a lot
more time familiarising myself with the structure and constructs if I was to write
the parser and also output the user data in the form of a source file. Matters
are not helped by the fact that source files have been edited by many different
people over the years, most do not have any comments and those that do aren’t
necessarily helpful. At this stage the design and implementation of a parser for
such a diverse collection of files in a language completely foreign to me concerned
me the most.

Although the above was the final architecture decided upon, other strategies for
solving the problem were considered. For example in the (very) early stages of
designing a solution I considered perhaps reading and writing the XML profiles
as a way of configuring the machines. However it was quickly realised that this
wasn’t possible and in fact would have not changed any of the data on the server
side and so any changes that I did in fact make would be lost.

Using the above design it seemed feasable taht I could achieve my aims. Also
the modular nature of the design means that it can be altered or extended as
neccessary.

18 2. INITIAL DEVELOPMENT

2.4 Testing and Evaluation of Proposed Solu-

tion

To measure the success of the project methods of evaluating the finished design
need to be developed. This will not only help define the problem but also and
more importantly judge whether the project has been a success. Testing is of
course vital to any software project to ensure quality and to check that the
system behaves as expected. Thus it is important to think of testing methods at
this stage and carry out testing throughout the software development process.

The system will be evaluated throughout the development process by real users.
Several iterations are planned and at each stage I hope to receive feedback as to
what features should be added and which need more work. I also hope to test
my solution on novice users and get feedback from them.

The aspects of evaluation will be:

• Initially method to change individual machines then progressing to aspects:
enables me to check that the GUI is progressing in the right direction

• 1st round of feed back from Lex Holt/Paul Anderson, as is only basic im-
plementation feedback from real users wouldn’t be all that helpful

• Need to formulate a way of getting feedback so that it is useful and complete

• Trying to construct prototype system

- Simplified set of source files

- Configuration of one machine only

The initial prototype will be very much a limited system. The user will be able to
alter the configuration of individual machines. From this the user will be able to
select which header files they want to include,any additional specifications may
be entered from a text box in the user interface. The text box will currently be
held under the Extra tab in the LCFG Configuration window. This basic design
is there so that I can make sure that all the basic elements of the system are
working appropriately before I go on to add more advanced features.

Initial feedback will be from Lex Holt and Paul Anderson, it would have been
possible to get real users to evaluate the interface at this stage however I felt that
as it is such a basic implementation and as a result the functionality was limited
that the feedback would not be helpful.

Once the initial prototype is running, I will question the real users of the system
which features they regard as most important. From this list I will be able to
order my list of advanced features to develop on top of the prototype system. At

2.5. SIMILAR SYSTEMS 19

several stages I will get the real users to evaluate what I have done and revise
my design if necessary. At this stage some thought was spent thinking of how
to best get the support staff to evaluate the system and hence receive structured
feedback.

For testing I will not only need to test my system in a real set of LCFG source files
but also use source files developed by myself that will test the limits (boundary
constraints etc) of the system and give me an accurate indicator of performance
throughout the development lifecycle. Also by making the system as modular as
possible unit testing will enable fast error detection and correction.

2.5 Similar Systems

To help conceptualise the design problem a variety of other network management
tools were investigated. Some designed in Perl othes not. Although none of
the intefaces examined were for LCFG they still provided a valuable insight into
how to design the user interface. None of the systems examined used a similar
architecture to the system I planned to develop and so other than aiding me with
interface design the review of other systems was of limited use.

LaptopNet3 is a laptop network management tool and gave me some ideas on how
to lay out the GUI. The interface is written in Perl/Tk and so was particularly
interesting to examine. MOSIXVIEW 4 is a GUI for managing openMosix-Cluster
networks and again gave me many ideas on GUI layout. NOCOL5 is a popular
system and network monitoring (network management) software that runs on
Unix systems and can monitor network and system devices. It uses a very simple
architecture and is very flexible for adding new network management modules.
NOCOL is written in Tcl/Tk and so isn’t as directly relevant as the above two
examples.

Also [4] was extremely useful in gaining a backround knowledge of network
configuration tools but had little direct bearing on the project.

2.6 HCI Research - Summary

Time was spent familiarising myself with guidelines and literature that would
allow development of a GUI that was easy to use and intuitive. This section
contains a very brief summary of some of the work that was carried out into

3http://www.imfc.edu/ daniau/laptopnet/
4http://www.mosixview.com/indexen.html
5http://www.netplex-tech.com/software/nocol/

20 2. INITIAL DEVELOPMENT

interface design. The reason being that the research was not to prove directly
useful and so as a result is only touched upon here.

Know the user and match the interface to the user’s knowledge and tasks - this
guideline has very much been kept in mind throughout the development process.
Provide means of cancelling actions. Require confirmation of actions which have
irrecoverable consequences. A good interface will have the following properties:
[5]
Learnability:

• Predictability: the systems behaviour is observably deterministic

• Synthesisability: the user caan assess the effect of past actions

• Familiarity: match the interace to teh users expectations

Flexibility:

• Dialogue initiative: give user control of dialogue flow

• Multi-Threading: provide support for simultaneous tasks

• Task Migratability: negotiability of function allocation between user and
system

• Substitutability: equivalence for different forms of input expression

• Customisability: interface iscapable of being adapted to suit different needs

Robustness

• Observability: relationship between the system state adn its presentation

• Recoverability: support for undoing errors

• Task Conformance: interface functionality should match common user tasks

• Responsiveness: feedback should be evident with action

2.7 Detailed System Design

First will be a general overview of the system, a description of how the four
modules will interact and also how the user interacts with the system. The
description below is similar to the one given in the preceding section but is here
to remind the reader of overall architecture before the specifics of the system are
given in detail.

The user will type in the command to start up the system or conceivably from
a graphical menu. The system will then check to see if the database has been

2.7. DETAILED SYSTEM DESIGN 21

previously constructed if not then the input module is run. The input module
finds all the source files and feeds them to the parser which then parses the data
into a format that can be transferred to the DBM, this data is then fed to the
DBM. A GUI will now display on the screen enquiring what the user wishes to
do, edit an existing machine source file, edit an existing header file or create a
new source file - specifying whether header or machine.

A new screen will then display on screen allowing the user to edit the respective
source file. Once the user has finished editing the source file they will press a
save button and the GUI information will be fed to both the DBM and the I/O
modules. At the DBM the entry for the corresponding source file will be updated.
At the I/O module the information will be processed into a representation of a
source file and written into the correct directory.

To begin with I drew several sketches of what I believe the layout of the interfaces
should be like. There will be two main screens: the initial screen where the user
selects what to edit and the configuration screen where the user edits the source
file.

The configuration screens for header and source files will be very much different
as they take very different forms. One of the aims of the project is to develop
a system that is easily understood and easy to use. Therefore time was spent
researching the ways in which best to layout and design a GUI.

Once the user has finished configuring the source file and clicked on the ‘save’
button the current source file will be written to a backup directory and the new
one written in its place. This is a mechanism so if that the user selects wrong
configuration options then they will be able to restore the previous settings.

This system is not intended to provide all the functionality that a user will need
to be able to develop every type of source file, it is intended more to a framework
that can be expanded upon as time goes on. Therefore the system code will need
to be well commented and easy to bolt extra functionality onto. There are several
advanced features that would be useful additions to the GUI, given the timescale
of the project I will not have time to implement all of these but as mentioned
above in section 2.4 the extra functions implemented will depend on what the
users deem more important.

The main conceptual problem posed by this project is how to represent a LCFG
source file in a graphical way (as a GUI interface).

2.7.1 Parser Module

Inputs: Source file data from I/O module
Outputs: Parsed source file data to Database module

22 2. INITIAL DEVELOPMENT

Parser Module Aims and Goals:

• Parse the information from the source files

• Put this information into sensible data structures

• Efficiency both with time and memory

• Handle any source file, this means data in any order, and parser may come
across unexpected tokens.

• Send source files data structures to the DBM module

From the start writing a parser seemed a daunting task, this was made a lot
worse by the worry that it would have to cater for anything around two thousand
different parameters. However initial discussions focused on the abstract level
required for the project and that writing a parser to do the above would be
infeasible. Also the amount of information that would need to be displayed on
the GUI would not be possible. A medium ground had to be established and so
the parser would evolve with the development cycle and only as much information
as needed by the functions implemented in the GUI would need to be parsed.

My first somewhat lazy approach to the design of the parser was to not actually
parse it all and simply send the file to the GUI and display it in a separate
window. This way the user would still be able to reference the source file and
so be able fill in the details into a blank GUI configuration screen. However this
approach would have wasted a lot of user time especially if only one parameter
was changing in a source file and with the time available I judged that it was
feasible to implement a more complicated solution.

Initially I considered using a mark-up language so that a series of tags could be
added to all of the various parameters that the system needed information for.
That way the parser would simply have to scan through the source file identifying
tags and then storing the information. The markup language would have to be
designed in a way so that it was easy to understand and was easily expandable.
However on further reflection it seemed that marking up source files would not
be the solution. There are around 700 machine files alone and marking up each
of these individually would take a long time and would be prone to error. Hence
using a markup language of this sort wasn’t feasible.

The third method was to use a pure parsing approach in that the parameters
have a unique identifying command and so although it would be more work than
using markup tags it would be possible to use pattern matching to find the pieces
of information needed to feed the DBM information. The parser will read in one
line at a time and scan that line for recognisable tokens, if found that token can
be deleted and the information can be stored in a variable and sent to the DBM.

2.7. DETAILED SYSTEM DESIGN 23

The parser will only run periodically after initialisation. So efficiency will not be
the primary concern - correctness of the parser is. As there are so many files to
parse I am expecting that the user will have to wait some time whilst the parsing
is in progress as a result some form of progress bar should be displayed so that
the user does not think that the system has crashed.

2.7.2 GUI Module

Inputs: Source file data from DBM, user configuration input
Outputs: Edited source file data to DBM module and I/O module
GUI module Aims and Goals:

• Use PERL/Tk toolkit to implement the GUI

• Use the parsed source file setails to set the defaults in the appropriate GUI
entry fields

• Organise and structure the grouping of functions so that they aid user
comprehension and ease of use

• Organise the layout of GUI objects on screen so that they aid user compre-
hension and ease of use

Initially trying to envisage what the GUI would look like was very difficult. There
would be a lot of information to display and a lot of complicated data would have
to be manipulated to set entry box defaults. To start with an initial screen will
appear asking the user which source file they wish to change from here they would
click on accept and proceed onto the configuration window. The configuration
window is where all the editing will be done. It was difficult to think about how
to design the configuration screen so the problem was broken down into smaller
steps.

The layout problem was tackled first. As there was so much information to be
displayed there was no hope of displaying all of the information on one screen
this would be both overwhelming and unusable for the user. Displaying the
information over multiple screen was a necessity. Several options were then open
to me;

• Multiple windows could open simultaneously on screen and the user could
iconify/de-iconify as needed

• Multiple layers could be used where the user would start from a main win-
dow and select options that would open up a further window leading to the
information that they wish to edit - the layers may be nested.

24 2. INITIAL DEVELOPMENT

• Tabs could be used where the user selects a heading tab and that infor-
mation is displayed, essentially only one window is open but within that
window are several others.

The first two options would lead to the screen being cluttered and may be con-
fusing. The first approach especially would be overwhelming for the user. The
second approach may be frustrating in that the user may have to search all the
way down a series of windows to get to the information they are looking for and
the number of windows generated may become unmanageable. The third option
keeps the screen uncluttered whilst at the same time being highly visible and
easy to navigate.

With the layout scheme chosen the next decision was how to divide up the pa-
rameters to put them into tabs. Initially I thought that it would be sufficient to
divide up the parameters up into header files and text, so that all of the header
files would be under one tab and everything else would be under another. After
examining the source files again I decided to break it down further into software,
hardware and text. Thus both the parameters that affected software would be
placed in the software tab, hardware in hardware and everything else would go
in text.

Using the machine template file (See appendix B) as a guide for initial prototype
system functionality I was able to construct a rough idea of what the GUI would
look like. However as mentioned in 2.8.1 it is not possible to parse all of the
parameters that LCD caters for. Just because the parser module doesn’t parse
them doesn’t mean that they can be ignored however. The parser will place any
unrecognised lines into a series of scalars and the GUI will place the contents of
these variables in some form of text widget that the user can edit. This way even
if the functionality has not been implemented for a certain type of parameter that
the user needs they will still be able to use the GUI to develop the source file.
Hence another tab will need to be added to contain this text widget. Examples
of the type of text that would be contained in the text widget are:
!auth.users mADD(All)
!xfree.monitor mSET(dell14u)

Also another item previously uncatered for was user comments within the source
files, there was also no method for the user to add comments to the source file
from the GUI. In much the same manner another tab was added that contained
a text widget. This text widget would display any comments contained in the
source files and from there the user could edit and add their own. This design
decision had repercussions for the design of the parser that will be discussed later.

2.7. DETAILED SYSTEM DESIGN 25

I looked into the options that PERL/Tk made available to me to design the
GUI, there are a staggering range of widgets6. The main tools that I will work
with are: tabs, scrollbars, keyboard shortcuts, autosave, drop down menu, radio
boxes, check boxes, multiple windows, colour coding, greying out entry fields,
layout design, grouping of common functions, menu bar.

Selecting mandatory header files would require some kind of drop down box, the
list of header files to go in this widget is supplied from the DBM. This way the
GUI will stay up to date as opposed to if the list of header files were to be hard
coded into the GUI. Optional header files would require some kind of selectable
list or checkboxes. Again the list of header files will come from the DBM. The
other parameters would require some entry widget for the user to enter in text.

2.7.3 DBM Module

Input: Data from parser, update information from GUI
Outputs: Source file information to GUI
Aims of the DBM module:

• To provide quick access to the data contained within a source file without
the need to parse it

• To provide persistence of the data generated by the parser.

A Database Management System is a collection of programs that enables you to
store, modify, and extract information from a database. There are many different
types of DBMSs, ranging from small systems that run on personal computers to
huge systems that run on mainframes. Perl provides access to the DBM through
the use of a hash associated with the database through a process similar to
opening a file. This hash (called a DBM array) is then used to access and modify
the DBM databse.

The DBM will store all of the parsed source information, this is because I want
to be able to access the source file data quickly without making the user wait
whilst a source code is parsed. The DBM will have to update itself whenever a
source file is updated, at the moment if the source files are changed out with the
GUI there is no way of the DBM knowing it has been changed. This problem
shall be covered in more depth shortly.

The next design decision to make was how many DBMs to use. Would one
large DBM suffice or would several smaller ones be more efficient. This required
investigating more into DBMs and the formats that I could use to store data.

6PERL/TK term for an object, this can be a button, some text or even graphics

26 2. INITIAL DEVELOPMENT

From the options that the DBM provided storing the source file data in structured
way would be possible. There were other options than using DBM, SQL could
have been used instead and would have been a more powerful tool but doesn’t
interact as well with Perl as the DBM. From reports on newsgroups that I found
there were several opinions that voices concerned as to whether DBM could handle
over a thousand records reliably and so as it was not difficult to divide up the
parameters into groups- having already done so for the GUI interface, I opted
to have several smaller DBMs. The penalties incurred for having to spend time
opening and closing links to multiple DBMs will be offset by the faster seek time
for entries in the smaller DBMs.

Organising the data in an efficient, manageable and visible way is a difficult task
especially given the nature of the source files. For some items such as the unparsed
information it is impossible to refine this to be more efficient and so the DBM
will have to store very long strings. Another design decision is the permission for
DBM files. The DBM generates two files a .pag and a .dir. Leaving these open
to anyone would pose a security risk and so the permissions for them will be set
to the user only.

The worry with the DBM is that if a source file is changed out with the GUI then
the DBM will be incorrect, this could lead to all sorts of problems. Methods have
to be developed to solve this problem if the system is to be of any use. There are
several ideas that I will put into practice

1. Every nth run of the system re-parse the source fikles and update the DBM

2. After a set timeperiod has elapsed since the last DBM update re-parse the
source files.

3. A reparse button in the GUI so that the user can manually reparse the
source files.

Also adding a remove source file button would be good to ensure DBM integrity
although it may be difficult to get user to start up a GUI to delete a file when
they can do it much quicker through a shell.

2.7.4 Input/Output Module

Inputs: raw source files, updated source file information from GUI
Outputs: raw source files to parser module
Parser Module Aims and Goals:

• To navigate the various LCFG directories and forward all of the source files
to the parser module

2.7. DETAILED SYSTEM DESIGN 27

• To receive the edited source file information from the GUI module and use
the information to construct a source file

• To backup the old source file and then write the new one into the appro-
priate directory.

The first time the system is run the I/O module will create a backup directory
for old source files. This is so that if a user makes a mistake whilst editing they
can always revert back to the original. When requested by the parser the I/O
module will scan through the various LCFG directories and locate all the source
files and then pass these onto the parsing module.

The other task of the I/O module is to take information from the GUI and
convert it into source file format. This format will be well commented, ordered
and uniform. It is the hope that by using this system over time all of the source
file will take on a similar format and so will be much easier to understand.

2.7.5 Timetable

The initial rough timeplan for the project is below. I was expecting this to
change as gained a better idea of what the project involved and also as I ran into
problems and set backs.

Term 1 Week 1: Receive project
Term 1 Week 2: Background reading and problem definition
Term 1 Week 5: Initial design for prototype
Term 1 Week 7: Begin implementing prototype system whilst still learning
Term 2 Week 1: Initial Prototype to be scrutinised by Lex/Paul
Term 2 Week 3: Partial Implementation given out to real users for feedback and
advice on what features they think are most important
Term 2 Week 7: Implementation of GUI asked by for real users, get more feed-
back
Term 2 Week 10: Implementation of GUI asked by for real users, final round of
feedback
Term 3 Weeks 4 - 7: Finishing Touches and Dissertation
Term 3 Week 8: Presentation

28 2. INITIAL DEVELOPMENT

3. Implementation

Throughout the implementation phases of the project goals had to be refined as
new information came to light and the design of the system also needed to adapt
to meet these changes. This chapter lists the changes that took place over the
implementation period and also describes the reasons for these changes. Also the
final design for the system is presented in detail. There were several intermediate
designs but the details for these are not included as a notion of these stages can
be gained from the revision of aims and design decisions. These intermediate
stages also do not differ enough from either the original design or the final design
to warrant an in depth description.

3.1 Revision of Aims and Objectives

The development of the modules proceeded slowly at first as I got used to pro-
gramming in Perl. The main problem I found with Perl when compared to java
(the language I’m most familiar with) is that there are almost no supported
libraries. Java provides a huge range of methods that can be called from your
program which means that you can develop a program very quickly and easily
without having to labour over minor programming tasks like finding the largest
element of an array. This is not the case in Perl and although modules can be
downloaded 1 it means that any machine that wants to run the program would
have to download and install the same modules thus the portability of the pro-
gram would be very much limited. Throughout the project the books [10] [11]
[12] of Perl books have been invaluable. A lot of time was spent studying these
books trying to gain an understanding of how to solve the various problems that
I encountered. I think the pace of the project would have been a lot quicker if I
had previous PERL programming experience.

The modules were developed independently of each other with stub classes repre-
senting the other modules. Once the module was ready it was transferred across
into the main program, the main program being the GUI module - as this is cen-
tral to the architecture of the system. To start with I had four fledgling systems
that didn’t provide much functionality, as the modules grew it became apparent
that the design of the system needed to change.

The parser worked well and much to my surprise worked a lot faster than I had
thought it would. This fact coupled with my concerns over DBM integrity and
scalability issues led me to reconsider using the DBM module. The system would

1http://www.cpan.org/ is the primary site for downloading Perl modules

29

30 3. IMPLEMENTATION

Start
Up

User Selects
Which

Machine
or Aspect to

Modify

Quit

Source File
Parsed On

The Fly

Display GUI/
User Editing

Backup
Old

File

Create and
Save New

Source File

Scan/Parse
Source Files

Quit

Quit

Save
Config

Old File
Copied

New File
Written

Source File

Figure 3.1: Overview Of Design Solution

not parse all the source files at start up but simply just parse the source file that
the user wants to edit. This design would not have any less functionality than
the original design but would require that the parser module was kept efficient.
If later on in the design stages it was apparent that I needed some form of data
persistence then I could use the already developed code from the DBM module
to implement this, as it turned out I wouldn’t be needing it.

The interface developed rapidly and evolved to take into account added func-
tionality. This mainly stemmed from the template file (see appendix B) so that
machine source files could be edited. Once basic machine functionality was im-
plemented I turned to developing the header file interface. The old problem of
header files being very complicated came back to haunt me. An oversight on
my part was that I got carried away developing the machine side of things and
focused less on the header files. As stated earlier there is very little structure
and consistency throughout the header files as a result it is an extremely difficult
conceptual problem to visualise an interface that would benefit the user. After
discussions the decision was made to focus more on the functionality on the ma-
chine side as both parsing and displaying header file information was deemed
infeasible.

I would not be ignoring the header files in my implementation again I stress
that this is a framework for future expansion so at the moment there is a ‘bare

3.2. REVISED TIMETABLE 31

bones’ editing interface that will allow construction of header files but not in as
structured an environment as machine files.

Any header files contained in the source file are parsed and pre-selected and all
additional text is placed under the text tab, again any comments are placed
under the comments tab. As justification of the above design header files should
probably only be modified by experts and as a result shouldn’t have to be guided
too much when configuring a source file.

The completion of the basic system was achieved early in term two with evaluation
from both Lex Holt and the support staff up at Kings Buildings. Feedback was
good and from this I was able to order a list of extra features that could be added
to the system. The details of these extra features will be presented later on in
the chapter.

Throughout the project I was required to stand back and realise that the com-
menting had started to become quite sparse and that variable names had become
a little obscure and so it was time to tidy up my code not only for the sake of my
sanity but also anyone who wants to develop the system further at a later date.
This did take up a lot time but were necessary otherwise the code would have
become obscure and unintelligible.

3.2 Revised Timetable

To accomodate these design changes and also the slow progress at the start of
the project the timetable was altered as follows:

Term 2 Week 1: Initial Prototype to be scrutinised by Lex Holt/Paul Anderson
Term 2 Week 3: Partial Implementation given out to real users for feedback and
advice on what features they think are most important
Term 2 Week 7: Implementation of GUI asked by for real users, get more feedback
Term 2 Week 10: Implementation of GUI asked by for real users, final round of
feedback
Term 3 Weeks 4 - 7: Finishing Touches and Dissertation
Term 3 Week 8: Presentation

32 3. IMPLEMENTATION

3.3 Revised Systems Design

3.3.1 Parser Module

The development of the parser took a long time, the design had to be carefully
thought out so that it was easily extensible as functionality was added. Initially
the parser only dealt with finding header files in source files. Then was adapted
to finding amongst other things the mac address and inventory information. The
parser works by reading in each line of the source file and looking for a key token.
If a key token is found on a line it means that data can be extracted from it
and the information stored in a scalar or array. The next development stage for
the parser module was enabling any text that wasn’t recognised as having a key
token and placing it in an array of scalars so that it could be displayed in the
GUI.

Next the ability for the parser to recognise comments was added. This was
particularly challenging as it meant that the parser had to accept the various
forms that comments could take. These are /*. . . */ and /* . . . */ and /**/ with
nothing in between and /* . . . */ making sure that no comments were missed or
that nothing that was supposed to be a comment showed up as text was quite
hard work and required several test files full of comments to make sure that
the system was working as expected. There were several bugs throughout the
code that I have remedied such as vast amounts of blank lines getting saved as
comments. When a source file is written through the GUI, the information output
source file is written in a structured and well commented manner. This posed a
problem though when parsing files that had already been edited with the GUI.
Comments generated by the GUI would get picked up in the parser and stored in
the comment array. This is fine but when the user saves the source file a second
time another lot of generated comments are output to the source file.

The solution to solve this was to return to the idea of using a mark up language,
only on a much smaller scale - one markup token in this case. Now when the
source file is written by the I/O module a token “-+-” is included at the start of
the comments. When the parser sees this token it discards the comment.

The only problem remaining with the parse that I would like to improve is that
all the comments are written in one paragraph at the start of the source file.
Hence all the comments written lose their place. This is obviously unsatisfactory
but would require substantial effort to get the parser to track the position of the
comment and then adapt that position as the source files grows and shrinks. As
a result the comment tracker will be one of my advanced features that may be
implemented at a later date.

One success story was the ease of integration of the parser and GUI module.

3.3. REVISED SYSTEMS DESIGN 33

There were a few teething problems but other than a few mis matching variable
names everything went well. It was good to see that the forward planning I had
put into the design of the modules paying off. It was also good not to have to
spend hours hacking away at code trying to find the source of the errors.

3.3.2 GUI Module

At the start of the project I thought I would have a lot of control over the layout
of the GUI, this assumption was to prove false. Strictly speaking the layout of the
GUI has been determined by how I have grouped parameters together. Initially
there were to be three tabs; hardware, software and misc. A text tab was then
added to this to allow the user to add in details that were not supported by
source GUI. Then a comments tab was added in to allow the user to add and edit
comments. The inf tab was put in to accommodate the the additional source files
from the inf directory (the inf directory contains files that are used by informatics
specific staff) and HD partition was added as a result of implementing one of my
advanced features.

When designing the system I was tempted to use modules from CPAN, a Perl
resource site that has a library of methods to suit a common purpose. I decided
against using CPAN modules as it would reduce the portability off the system as
every machine that wan’t to use the system would have to have these modules
installed as well.

Within these tabs it was a simple task of deciding whether the form of entry would
be a check-box, drop down list or an entry box. The actual placement of these
widgets was left as late as possible because by using the Perl/Tk pack manager
it is very difficult to position the widgets exactly where you want them. So it
was my decision to wait until the end so that all the widgets had been created
so that I could spend time on the layout. So now the functions and widgets were
split up over several tabs most of the layout work was done, all that was required
was to place the widgets into a sensible layout. Drawing concept sketches for the
layout was to prove no problem. However getting pack to place the widgets as
required was.

There are three geometry managers in Perl/Tk: pack, place and grid. After
reading up on the three I choose to use pack. However pack gives you very little
control on the exact placement on widgets. So to get a widget where I wanted
it to go required using lots of nested frames. It is possible to use two geometry
managers at the same time but it can cause problems with the GUI if it is resized
or if more widgets are added in the future.

Following the guidelines laid in section 2.6, I added a menubar at the top of both
the initial screen and the configuration screen. These contain Save and Exit under

34 3. IMPLEMENTATION

the File header and, Help and About under the Help heading, keyboard mappings
have been provided for these functions. Although there is little functionality in
the menu bar again I thought that it should be added so that more function may
be bolted on at a later stage. The help system was developed mainly from the
user guide (see appendix D) and may of course be revised at a later date but I
felt it necessary to include some form of online help in case the user gets stuck.
Not everyone will interpret the GUI in the way I have intended. It is the hope
that the GUI will keep users on the right track but we can’t always guarantee
that they will.

Again according to good HCI guidelines widgets that can’t be edited due to some
combination of selected settings are greyed out, indicating to the user that they
cannot change the contents of the box.

When the user is in the configuration screen they cannot open up another source
file to edit, the accept button has been disabled as long as the configuration
screen is open. On the initial screen the user cannot click on accept if a machine
or header file has been chosen. When the user wishes to save the changes they
have made to a source file a dialog box will pop up asking them to confirm that
they want to overwrite the source file, this is in case the user accidentally presses
the save button. If the user has entered the configuration screen and then presses
cancel a dialog box will pop up asking the user if they want to lose all of their
changes and exit. This is again so that if the user presses the wrong button they
have a chance to go back.

When the user chooses a machine or header file the configuration window will
open in addition to the old configuration window. This window displays the old
source file so that the user can reference it whilst editing the source file. The text
in the old configuration window has been made read only so that the user may
copy and paste information into the GUI but cannot edit the file.

The above figure shows the state chart for all states that can be reached by the
GUI.

3.3.3 Input/Output Module

There has been very little change to the GUI module from the original specifi-
cation. The module itself was very simple to implement and I found directory
manipulation to be a strength of PERL. Writing a source file out to file constantly
changed as new features were added, with a large revision when the markup token
was introduced.

Creating a format for a standard source file was another conceptual problem
faced. I envisage the GUI as both helping the development of source files and

3.4. PROCEDURE DESCRIPTION AND DATA FLOW 35

Initial
Screen Config Partition

Screen

Accept

Cancel/
Save

Start

Exit

Exit*

Edit Tabs Edit Partitions

Edit

Save/
Canel

Figure 3.2: GUI State Chart

also going some way to standardising their layout and structure. Therefore it was
necessary to think about how the I/O module would write the source file, what
comments would be auto-generated and also leave the option for later expansion.

3.4 Procedure Description and Data Flow

Figure 3.2 shows the flow of data throughout the system. Below is a description
of each of the procedures used and also a small sample of pseudocode (if required)
for explanation.

Main
Not really a procedure and all programs must have a main method to run. At
this stage the user ID and the system date are retrieved and stored. The direc-
tory search procedure is called and once that has returned, fill intial window is
called. The mainloop function is called at the end of main, this is necessary to
start PERL/Tk functions running.

center
This routine is called by windows in the system to position them in the center of
the screen.

directory search
Generates a progress bar which updates the progress as the various directories are
scanned and the names of the files are placed in the appropriate arrays. I have to
make slight admission here: When I first implemented the progress bar the speed
of the system was such that no sooner had the progress bar been drawn than it
was destroyed because directory scanning had finished. I thought the progress

36 3. IMPLEMENTATION

Accept_
Choice

MAIN

exit_
choice

directory_
search

fill_
initial_

window

about_
choice

help_
choice

set_
defaults

partition_
toplevel

accept_
partition

cancel_
partition

parse_
choice

set_
man_
inf

cancel_
config

save_
config

partition_
set_

frames

Figure 3.3: Overview Of Design Solution

3.4. PROCEDURE DESCRIPTION AND DATA FLOW 37

bar looked quite good and so I added a couple of sleep statements2, they can be
removed very easily but I did spend a little bit of time developing it and so I
thought it would be a shame not to include it.

Originally the progress bar was to appear to fill the time that was taken to parse
the source file between the user clicking accept and the configuration screen dis-
playing but the wait for this was even less than the time taken for directory search
to complete. So it was included in the directory seacrh procedure

The main body of the procedure scans the relevant LCFG directories and stores
all of the names of the available source files into arrays grouped by function.
The method also creates the directory /old source files if it hasn’t already been
created.

fill intial window
The first thing that this method does is destroy the progress bar created in
the directory search procedure. The main job of this procedure is to use the
information from directory seach to produce the first GUI window initial screen.
see appendix A for screenshot. all of the machine files are placed into the machine
list box and all of the header files are placed in the aspect entry widget. The user
can either type in the name of the file they wish to edit or they can select the file
from the drop down list.

The menu bar is created, from here the user can select exit from the file menu
and about and help from the help menu. The menu bar is easy to expand upon
if extra features are added. The widgets and labels are then added. The action
taken by the system if the user presses the exit button is to call the exit choice
procedure and accept choice is called when acept is pressed.

parse choice
This method first calls the set man inf procedure. It next opens the filehandle to
the user selected file. The parser then deals with comments, recognised tokens
and unrecognised text. 3 The pseudocode for the parser is shown below:

declare @comments array;

set $comment_flag == 0;

set $comment_flag == 0;

FOR each line in the source file

{

chomp line

IF line isn’t blank DO

2the sleep(time) method in PERL makes the system wait for a time indicated by time
3This PERL function removes the carriage return from the end if the line

38 3. IMPLEMENTATION

{

IF comment_flag == 1 DO //already in a comment block

{

IF line ends with */ DO

{

then this is the end of the comment block

append this line to $comments[$comment_element];

set $comment_flag == 0;

set $comment_element += 1;

}endif

ELSE

{

still in comment block which doesn’t finish on this line

append this line to $comments[$comment_element];

}endelse

}endif

IF comment_flag == 0 DO //not in a comment block

{

IF line starts with /* DO

{

IF line ends with */ DO

//commemt begins and ends on the same line

{

chop off /* and */

add comment to array of comments @comment;

increment comment_element += 1;

}

}

ELSE

{

//comment does not begin and end on same line

chop off /* ;

add comment to @comment;

increment comment_flag += 1;

}

}

IF recognise token DO

{

determine token and store data;

}

ELSE

{

store as text;

3.4. PROCEDURE DESCRIPTION AND DATA FLOW 39

}

}endif

}endfor

exit choice
The main task of the exit choice procedure is to provide the user with a pop up
reminding them that their changes will be lost if they exit from the configuration
screen. If the user is on the initial screen then there is no information to lose and
so the program exits normally.

about choice
This procedure creates a pop-up containing information about the project

help choice
This procedure creates a pop-up containing the user guide about the project. See
appendix D.

accept choice
The accept choice procedure is launched when the user presses the accept button
on the initial screen. First the procedure checks to see that there isn’t already a
configuration screen open - if there is then it does nothing. It then checks to make
sure that a file has been selected on the initial screen. If a file has been selected
then the parse choice procedure is called when this returns the configuration
window is created.

Next the configuration Top level4 is created then the old configuration Top level.
The old configuration window displays the old source file by opening a filehandle
to the source file, reading it in and then closing the filehandle.

The menubar is then created and then the Notebook PERL/Tk package is used
to create the tabs on the configuration screen. depending on whether the user
choose to edit a header file or a machine file different configuration screens will
be generated.

If machine was chosen the following tabs will be created:
software, hardware, inf, misc, fstab, text, comments
If aspect was chosen the the following tabs will be created:
headers, text, comments

The tabs themselves create appropriate widgets and fill drop down boxes and list
boxes from arrays generated from the parser. Special options had to be enabled
for the listboxes to allow more than one selection to be made at a time and also

4A TopLevel is similar to a new window but is created as the child of the parent window -
in this case initial window, this means that if initial window dies so does configuration window

40 3. IMPLEMENTATION

to allow more than one listbox at a time to have a selected value: selectmode =
multiple and exportselection = 0.

The only tab that requires special attention is HD Partition. When the user
presses the configure button a call is made to partition toplevel which is described
below.

save config
A pop up is created to ask the user if they want to overwrite the source file. If
yes the procedure continues, if no then the procedure does nothing. If the user
selects yes the old source file is written to the backup directory. Information is
retreived from the GUI and written out to the source file. The procedure finaly
destroys the configuration and the old configuration windows.

cancel config
This procedure destroys the configuration and old configuratation window

set defaults
This procedure pre-sets the entries to the list boxes, drop down menus, radio
buttons etc in the GUI. The procedure will follow one of two routes:

1. The source file is a header file therefore match all included header files
into the listbox under the headers tab and select those present using the
selectionSet command.

2. The source file is a machine file therefore the process is broken down accross
the various tabs to set entry widgets, radio buttons and listbox items.

set main inf
This procedure keeps a list of all the mandatory site wires and site specific details.
They are kept in a separate procedure so that they are easy to change.

partition toplevel
A new Toplevel is created - the child of the configuration Toplevel, the number
of tabs created in this window is dependant on the radio button selection from
the HD Partition tab in the configuration window. partition set frames is called.
Then when this procedure returns the widgets are created.

cancel partition
The cancel button will result in the partition window being destroyed.

accept partition
The accept button will result in the window being destroyed and an edited flag
being checked so that the I/O module knows that the information has been edited.

partition set frames
There is a quite a complex frame layout for partition window and so a separate

3.5. INTERMEDIATE USER FEEDBACK AND ACTIONS TAKEN 41

procedure has been used to set up all the frames that are required for the partition
Toplevel.

3.5 Intermediate User Feedback and Actions Taken

It was very important as I had no experience developing source files when I
began the project to receive advice and feedback from those who did have a lot
of experience - those who would eventually be using the system as well hopefully.
Those I sought advice from was principally Lex Holt followed by the support staff
up at kb and also Paul Anderson. Their feedback on the initial prototype I had
developed directed what features should be implemented and which wouldn’t be
used.

After discussions with the support staff at James Clerk Maxwell Building, Kings
Buildings a list of useful features was obtained and also some advice on the layout
of the GUI. The main topic discussed was the implementation of a function that
could help them partition discs in LCFG. This required further research and after
a brief evaluation as to whether the extension to the current system was feasible
I began to implement.The details of this extension can be found below.

In addition the staff would have liked to have seen functions to encable them to
edit auth, printer, and vmware parameters.

3.6 Additional Features Implemented

There have been many features and functions that were not included in the basic
system and these have been covered in the previous design sections. The features
here are the ones that took a lot of time or I felt were particularly important.

LCFG source files have the ability to override the disk partitions on a machine.
(appendix B) Shows an example of a source file with this property.

There are currently 89 fstab overwritten source files out of 706 so with about 12%
of LCFG files and the backing of the support staff I got underway developing the
extension. The commands are quite difficult to understand and again it became
apparent that the GUI would not be able to cater for every taste. Some of the
fstab commands would have to entered manually. The number of fstab commands
took me by suprise and suddenly I had a lot more work to do than I initialy
thought. Each machine can have up to four physical hard discs and each of these
can have up to four primary partitions. There are a range of commands that

42 3. IMPLEMENTATION

can be used on each partition and so trying to decide on a detail level was very
difficult.

Conceptually trying to visualise how I would lay out the information so that it
made sense was a very difficult task.

The problems I faced in the design were only slightly more difficult than the actual
implementation. With having four entry widgets for each virtual disc that meant
4*4*4 = 64 entry widgets for the fstab function alone, this doesn’t include the
checkboxes, menu and cancel save buttons. This was a lot to manage and so lot
of frames were needed to allow me to place the widgets in a sensible arrangement.

Currently the hard discs are arbitrarily named(hda,hdb,hdc,hdd), this is because
I don’t want to clutter up the window further with further widgets for naming
the four discs. Another small feature not implemented is a button that would
automatically set the second partition of the disc to a swap space. This seemed
to bea very common operation and so to save users time this button would be
clicked on all the entry widgets for the appropriate section would be set.

Unlike the rest of the system the HD Partition details are not parsed and set
as defaults in the entry widgets. I had to have a cut off point at which to stop
programming and I reached this point whilst modifying the parser to do just that.
Parsing the disc partition details was proving a particularly difficult problem due
to the large number of commands and varied styles of usage. I believe though
that with a little more time I would have been able to implement partitioning
parsing. no parsing of fstab stuff

4. Testing and Evaluation

Throughout the lifecycle of this project there has been a focus on testing and
evaluation. Throughly testing this system has been necessary so that it produces
correct source files. Also there has been a focus on continuous evaluation so that
the system developed to suit user needs.

A set of source files developed by myself was used primarily to test the system.
These test files covered a wide range of the parameters encountered in LCFG.
These source files were particularly concentrated on checking that the function-
ality implemented in the system worked. For example files would contain all
the different types of quotes /**/, /* . . . */, /* . . . , carriage return, */ etc to
make sure that the parser caught all possible types of comments. These test files
evolved as new functionality was imlpemented into the system.

Testing was also carried out in the real LCFG environment as soon as the protoype
system was ready. During the full integration tests the system performed well.
Even with a drastic increase in the number of source files available the system still
performed as expected with almost no perceivable delay in the loading process
or whilst parsing.

4.1 Testing Results

It is not possible for the user to progress to the configuration screen if a machine
or aspect has not been selected. For ease of use I have allowed the user to type in
the name of the source file they wist to edit rather than selecting it from the list.
However this has the unfortunate side affect that the user can enter in anything
they want and then press accept and the system will try to find the file and fail.
Some form of error checking is needed here Similar problems can be found with all
the entry widgets in the GUI and if the system were to be expanded a method of
comparing the user entered field with the entries of the appropriate array would
solve this problem.

During testing it was also discovered that if a configuration file is edited then
another or indeed the same one is chosen and the user chooses to edit again
some of the variables used in the previous run are not completely reset and so
erroneus results were found in some of the test cases. This is the fault of some of
the (necessary) global variables, these variables need to be set to null when the
system returns to the initial screen to solve this problem.

Some comments don’t get caught. comments with no space between the open

43

44 4. TESTING AND EVALUATION

comment token and the text will not be found and as a result will be placed in
the text section of the GUI. This is not a major problem as when written out
to the source file it will still be encapsulated in its comment braces. A problem
arises however if an open comment token that has a space between the token
and text and if we have a close comment token that has no space beside the
text. In this situation the system will place everything in the comment section.
The reverse can also happen but with less disasterous affects. This was a feature
found during testing and can be overcome by refing the parser to search for the
regualr expression within words as opposed to comparing whole words as I have
done.

The system was tested with double the number od source files and behaved
slightly slower in the start up phase but otherwise unchanged. This proves that
the system is scalable. I tested the GUI with a source file twice as large as the
largest source file (sitedefs.h) and this worked fine as well. I tried to find the
maximum number of characters that text widgets can hold but couldnot find the
answer. I am confident though that if it scales to hold twice the largest source
file it will be suficiently future proof. The same goes for the list boxes and entry
boxes but again I am confident that they will be large enough to hold whatever
the future brings.

During the first test runs with the full LCFG system it was noticed that some
machine files did not have a hardware platform. This was expected of some
source files like printers but these were normal machines. After investigation it
seems that some of the functions have been transferred over to the informatics
folder and have an entry there to cover the hardware base. This means that
although the hardware base slot is mandatory sometimes the hardware base will
be selected through the informatics tab. An extension to the system would be to
take account of this fact and it will also be necessary to follow how LCFG evolves
to see if more source files will migrate to other locations.

Another test performed is what happens if the the source file read in contains
a header file that no longer exists. If the included source file is displayed in an
entry widget then it will be displayed as the parsed option but it will not be
included in the drop down list. Otherwise this error does not intefere with the
system but is obviously unsatisfactory and a check needs to be performed that
compares all the parsed in header files with the list of current header files. If the
included header is to be displayed in a list box the problem is more serious and
none of the options are set as a result. Again some checks need to be performed
but these were very much validation and verification issues that I was trying not
to focus on. Not ignore because they are problems with my system but these
problems can be solved with a series of validation checks and so they have been
noted here in case the system is to be upgraded.

should have used a hash instead of an array but initial testing was with a small

4.2. EVALUATION OF THE SYSTEM 45

set of files so didn’t notice when big file thing might make a difference not sure

Blank entries for compulsory files?? what happens?

4.2 Evaluation of the System

Apart from those situations described in the previous section the system produced
satisfactory working source files under all other testing conditions. This was
the aim of the project and so I can say that the system I have developed has
achieved it. The user may develop any type of source file through the GUI, many
of the lesser used parameters have not been catered for explicitly butcan still
be developed throught the use of the text section. Source file creation has been
aided by the structure provided in the GUI and user workload has been lessened
as most of the code is auto-generated by the I/O module.

The GUI itself is easy to use and straight forward although I feel that with a
little more time I could have added a slightly more professional feel to it. My
main complaint is that there is a lot of wasted space, this is especially apparent
in the hardware and software tabs. However the size of the window is dictated
by the size of the text widget from the text and comment tabs so making the
window smaller is not an option. The misc tab I feel has come together well and
looks quite good as does the configure partition window but these are the only
two pieces I am entirely happy with on purely asthetic basis.

The help system is minimal at best and I would have liked to have had the
chance to develop this further using various methods such as pop balloons and a
searchable help system. I feel that development of the system should have been
one of my aims earlier on in the project. By including all I have learned about
LCFG over the lifespan of the project and also a more detailed account of how
to work the GUI would have made the system much easier for a novice to LCFG.

The aspects side of the system I feel is also slightly a let down but I feel that there
is little I can do to develop it any further. As it stands it is not a particularly
useful tool and only can be used as an aid to including header files. Using a text
editor I feel would have been just as quick as using the GUI as there are additional
features in the editor that would speed up the process. Further investigation may
provide a solution to representing header files in a GUI environment but from my
studies I believe that it is possible but I am not sure that it would make anything
any easier.

The parser is one of my success stories and I am quite proud of the way that
the source files are parsed - quickly, and the way that the options are selected
within the GUI. There are some flaws in teh parser as pointed out above but I

46 4. TESTING AND EVALUATION

believe these are fixable and that if there is a need the parser module is easily
extendable.

The decision to drop the DBM module in the middle of the project I maintain
was a good one. Especially after full integration testing where liveness of the
system was obviously not a problem. I believe that the DBM would have created
more problems than it may have solved. Its inclusion would have enabled some
interesting functions to have been implemented such as changing the operating
system header file across all source files which had a certain hardware base, this
would have been achieved by searching across the hardware base field in the dbm
and and then changing the os field of all the source fles that matched. There are
certainly some exciting functions that could be developed and so perhaps in the
future the DBM could be added and when needed for a special function, could
be updated and then carry out the opertation. I still believe that parsing ‘on the
fly’ is a better method as keeping DBM integrity intact would be too much of a
headache.

The source files produced are accurate and are all in a standard format with auto-
generated quotes. I think if all the LCFG source files were of a simpilar style and
structure they would be a lot easier to manipualate and understand. Of course
there is still the problem with the comment tracker and so not all comments will
be as useful as the auto-generated ones. I would very much have liked to have
tried to implement the comment tracker, I did enjoy developing the parser - far
more than I did developing the GUI side of the system. It is an certainly an
interesting problem that needs some further investigation.

Appendix C shows an example source file produced using the GUI.

4.3 Lessons Learnt

This is the first project of any practical size and use that I have had the oppor-
tunity to undertake and as such it has been an invaluable learning experience.
I’ve learned a great deal about time management, there has been no one to stand
over me to make me work and in a sense there has been no deadlines other than
a start and finish date. It was also good to have a chance to put into practice
what we have been learnng for the last four years about the software development
process. It easy to see why it is such an important subject as even with a project
this size I was sometimes sidetracked and it took me a while to realise that I ha
deviated from what I should be doing.

This was the first large piece of code that has been solely developed by myself,
I think that if I had the chance to redo the project I think that I would have
made the code much more object orientated in nature. The books that I began

4.4. EXTENSIONS, IMPROVEMENTS AND DOCUMENTATION ISSUES47

learing PERL from weren’t in an OO style and so my inital code begun life in
this way. Then all of a sudden I was 7 weeks into the project and it was too late
to change the code around. Not to say that the code is unitelligable but after
four years of OO methodolodgy getting taught to us I would have liked to have
had the chance to develop a large system based on that paradigm.

I also learned that things will go wrong, no matter how much time is spent
designing the system. I didn’t really take into account how much time would
be spent revising the system, taking account new information and developing
solutions to problems that I hadn’t anticipated. I think that I should have allowed
more time in my intial timeplans to cover for unexpected errors that were bound
to appear.

I feel that the amount of HCI research that I did at the start of the project was
too much. Especially as in the end I in fact had very little control over the actual
appearance of the GUI. With most of the widgets grouped together by function
it was merely common sense that dictated where to place the widgets in the
window. Good HCI practice such as ‘greying out’ unavailable boxes were already
known to me through years of using GUIs. Still some research was neccessary
and if the project were to expand perhaps the level of research would become
useful. Although I believe that by doing so much research at the start of the
project it made it easier to conceptualise how I was going to turn a source file
into a GUI representation.

I have also learned to use a new language and also got my first taste of GUI
development. Skills which I am sure I will use in the future.

4.4 Extensions, Improvements and Documenta-

tion issues

Firstly there are security issus with the system. Who gets access to the system
and how do we restrict this access. Can the GUI be modified in such a way
so that we can have access levels, this would mean that depending on security
access level of the user thy would only be able to carry out certain functions or
edit ceratin cource files.

In a similar vein but not quite a security issue if there are multiple instances of
the GUI running on different machines may cause race conditions. Which means
whoever saves first won’t have any of their details stored as the second save will
overwrite what they had done. Some provision of mutual eclusion could be used
to allow only one instance of the GUI access to a source file at a time.

There are a lot of Validation and verification issues throughout the program and

48 4. TESTING AND EVALUATION

these have not been ignored but as said previously in this document it was I
did not focus on them as I wanted to concentrate my efforts on improving the
functionality of the system. It was also assumed that any errors in the source file
will be picked up by the mkxprof compliler and as a result v and v issues did not
have to be dealt with at the GUI. However to make the system more robust and
helpful data entries should be validated, numerical ranges should be checked to
make sure they are sensible etc.

Improvements to the system have for the most part already been stated in the
previous sections but in a nutshell: the layout and appearance of the GUI could
do with some more work to make it look a little more professional. The text and
comment tabs could be upgraded so that they appear much like a word processor
so that development of large portions of source file text is made quicker1.

Documentation issues, there is a user guide (see appendix D) which will need to
be kept up to date as new functions are added. It is also important that with any
functions added there is appropriate program code documentation and comments
throughout. If there is to be more than one person working on a software project
over its lifetime it is crucial that everyone can understand everyone else’s code
both so it can maintained and added to.

I would have liked to have developed error checking on the inputs but there
really wasn’t time. All of the inputs should be validated but it was a decision
made early on in the project to focus on functionality rather than validation.
However there is definetly scope for implementnig a lot of error checking within
the system. The reason why this problem isn’t high on the priority list is that
the mkxprof compiler checks the source file first so in a way there is some indirect
error checking in the system. Error messages will get fed back to the user at some
stage but it is an inconvienance.

Another additional feature that I would liked to have developed is a graphical
way of allocating disc space in the partitioning sections. Using a pie chart with a
sliding scale it would be possible to see the partitions. This was quite low on the
priority list though as it is hoped that the user has a clear idea of how they want
the hard disc to be partitioned and also beacause it would have meant importing
in modules from CPAN.

There is scope for the project to be extended from the framework that I have
developed. Many of the extensions and improvements have been discussed in
detail throughout this document.

1NB: there are already functions such as cut and paste already included as part of the text
widget, a menu for these functions can be activated by right clicking the mouse on the widget

5. Conclusions

The basic aims have been achieved and also a number of the advanced ones.
A framework system now exists that can allow novice userrs to develop LCFG
source files. More time is needed to make the system completely sound (I have
pointed out the flaws in the system in the preceeding chapters) and also to add
validation to all user input.

I believe the project has gone well and am happy with what has been produced,
the pace has been slower that I had predicted and so less functionality has been
implemented than I would have liked. Namely the parsing of the disc partition
commands and also modifying the parser to allow some form of comment tracking.
More work is needed on the complicated functions before the GUI can start to
be used by expert users as the functionality is not there to support the types of
commands an user of this type would need.

the system has performed consistently well in testing. From the feedback I believe
that (with a little more work on the functionality and validation) that the GUI
would be able to compete against emacs as the top way to configure LCFG source
files.

49

50 5. CONCLUSIONS

Bibliography

[1] Title: DICE Architecture
Author : Simon Wilkinson

http://www.dice.informatics.ed.ac.uk/development/doc/arch_stage1.html

[2] Title: Towards a High Level Machine Configuration System
Author : Paul Anderson

http://www.lcfg.org/doc/LISA8_Paper.pdf

[3] Title: Large Scale Linux Configuration with LCFG
Author : Paul Anderson, Alastair Scobie

http://www.lcfg.org/doc/ALS2000.pdf

[4] Title: Technologies for Large-Scale Configuration Management
Author : Paul Anderson, George Beckett, Kostas Kavoussanakis, Guillaume
Mecheneau , Peter Toft

www.epcc.ed.ac.uk/gridweaver/WP1/report1.pdf

[5] Title: Human-Computer Interaction
Author : Dix, Finlay, Abowd, Beale

[6] Title: LCFG: The Next Generation
Author : Paul Anderson, Alastair Scobie

http://www.lcfg.org/doc/ukuug2002.pdf

[7] Title: LCFG Evaluation

https://wwwlistbox.cern.ch/earchive/hep-proj-grid-fabric-resource/ doc00000.doc

[8] Title: Webopedia

http://www.webopedia.com

51

52 BIBLIOGRAPHY

[9] Title: Systems Analysis and Design
Author : Kendall, Kensall
ISBN: 0-13-042365-3

[10] Title:Mastering Perl/Tk
Author :Stephen O. Lidie, Nancy Walsh

[11] Title: Learning Perl
Author : Randal L. Schwartz, Tom Phoenix

[12] Title:Programming Perl
Author :Larry Wall, Tom Christiansen, Jon Orwant

Figure 5.1: Initial Screen

Appendix A

A–53

A–54 Appendix A

Figure 5.2: Old Source File Configuration

Figure 5.3: Hardware Configuration

Appendix A A–55

Figure 5.4: Hardware Configuration

Figure 5.5: Inf Configuration

A–56 Appendix A

Figure 5.6: Miscellaneous Configuration

Figure 5.7: fstab Configuration

Appendix A A–57

Figure 5.8: Additional Text Configuration

Figure 5.9: Comment Configuration

Appendix B

An example of a machine Source file:

#include <lcfg/os/redhat71.h>

#include <lcfg/hwbase/dell_optiplex_gx240.h>

#include <inf/sitedefs.h>

#include <inf/wire_c.h>

#include <inf/office-jcmb.h>

!auth.users mADD(+djr)

dhclient.mac 00:06:5b:be:e9:9c

/* Partition the Disk */

!fstab.disks mSET(hda)

!fstab.dopartition_hda mSET(no)

!fstab.partitions_hda mSET(hda1 hda2 hda3)

/* Root partition */

B–58

Appendix B B–59

Figure 5.10: Disc Partition Configuration

B–60 Appendix B

!fstab.mpt_hda1 mSET(/)

!fstab.size_hda1 mSET(10000)

!fstab.type_hda1 mSET(ext2)

!fstab.preserve_hda1 mSET(no)

/* Swap partition */

!fstab.size_hda2 mSET(512)

!fstab.type_hda2 mSET(swap)

!fstab.preserve_hda2 mSET(no)

/* Personal home space */

!fstab.mpt_hda3 mSET(/disk/home/asparagus)

!fstab.size_hda3 mSET(free)

!fstab.type_hda3 mSET(ext2)

!fstab.preserve_hda3 mSET(yes)

/* Inventory information */

inv.sno 5W5PF0J

inv.allocated djr

inv.location JCMB-1510

inv.manager support

/* End of File */

An example of a header source file:

/* Site specific defaults for inf.ed.ac.uk */

/* DCS [Datalink] machines bought in summer 2000 (purchase order a450162) */

/* based on dcs.ed.ac.uk RH62 header files

dcs_gentoo.h, dcs_gentoo2.h, dcs_gentoo_hdc.h */

xfree.video atiragepro8

xfree.monitor idekpro410

xfree.displays 16bit 8bit 24bit

xfree.mouse pilot

xfree.keyboard pc104

/* old mutation syntax, replaced below

OVERRIDE(xfree.modes_8bit) 1152x864 1024x768

OVERRIDE(xfree.modes_16bit) 1152x864 1024x768

OVERRIDE(xfree.modes_24bit) 1152x864 1024x768

Appendix B B–61

*/

!xfree.modes_8bit mSET(1152x864 1024x768)

!xfree.modes_16bit mSET(1152x864 1024x768)

!xfree.modes_24bit mSET(1152x864 1024x768)

/* old mutation syntax, replaced below

EXTRA(hardware.modlist) ether usbuhci */

!hardware.modlist mADD(ether usbuhci)

hardware.mod_ether alias eth0 3c59x

hardware.mod_usbuhci alias usb-controller usb-uhci

inv.model DCS ATX Celeron

/* Suspend all clock-related differences as an experiment -

maybe it’s better under 7.1. Chris 6 Aug 2002 */

#ifdef NOTUSINGTHISJUSTNOW

/* These machines seem to have very wonky clocks - they sometimes

leap ahead by 25 or 27 hours. So we correct them every hour with

"ntpdate", and turn off xntpd to stop it getting upset about this

(and anyway, ntpdate refuses to perform when xntpd is running). */

DELETE(boot.services,lcfg_ntp)

EXTRA(cron.additions) ntpdate

cron.add_ntpdate 17 * * * * /usr/sbin/ntpdate -s ntp1 ntp2

cron.owner_ntpdate root

/* ntpdate falls over if the clock is too far out!

So first we set the clock approximately with rdate, then ntpdate

comes in a minute afterwards to correct it more exactly.

Good grief. */

EXTRA(cron.additions) rdate

cron.add_rdate 16 * * * * /usr/bin/rdate -s sligga.dcs.ed.ac.uk

cron.owner_rdate root

#endif

An example of the LCFG machine template file:

%

B–62 Appendix B

% Template linux machine profile

%

% * the ordering of header files categories is critical

% * you should provide values for all resources that have

% the dummy value FILL_ME

%

%

% DELETE from this line upwards

%

% *** Please delete lines that you’re not using ***

%

/* fill in hostname here */

/* Operating system - mandatory */

#include <lcfg/os/redhat71.h>

/* Optional software features - choose any combination of */

/* #include <lcfg/opts/laptop.h>*/

/* #include <lcfg/opts/scsiroot.h>*/

/* #include <lcfg/opts/serialconsole.h>*/

/* #include <lcfg/opts/server.h>*/

/* Hardware model - mandatory - choose one */

/* #include <lcfg/hwbase/dell_latitude_c640.h> */

/* #include <lcfg/hwbase/dell_optiplex_gxa.h> */

/* #include <lcfg/hwbase/dell_optiplex_gx1.h> */

/* #include <lcfg/hwbase/dell_optiplex_gx110.h> */

/* #include <lcfg/hwbase/dell_optiplex_gx150.h> */

/* #include <lcfg/hwbase/dell_optiplex_gx240.h> */

/* #include <lcfg/hwbase/dell_optiplex_gx260.h> */

/* #include <lcfg/hwbase/dell_poweredge_1400.h> */

/* #include <lcfg/hwbase/dell_poweredge_2500.h> */

/* #include <lcfg/hwbase/dell_poweredge_4600.h> */

/* #include <lcfg/hwbase/dell_ws340.h> */

/* #include <lcfg/hwbase/dell_ws350.h> */

/* #include <lcfg/hwbase/dell_ws530.h> */

/* #include <lcfg/hwbase/hp_6000.h> */

/* Optional hardware features - choose any combination of */

/* #include <lcfg/hwopts/cdrw_hdc.h>*/

/* #include <lcfg/hwopts/gen15lcd.h>*/

/* #include <lcfg/hwopts/gen17lcd.h>*/

/* #include <lcfg/hwopts/iiyamaHM903DT.h>*/

Appendix B B–63

/* #include <lcfg/hwopts/logitech_usb_wheel.h>*/

/* #include <lcfg/hwopts/sound_soundblaster.h>*/

/* #include <lcfg/hwopts/sxga_plus.h>*/

/* #include <lcfg/hwopts/video_nvidia.h>*/

/* #include <lcfg/hwopts/video_radeon.h>*/

/* #include <lcfg/hwopts/zip_hdd.h>*/

/* Mandatory site specific defaults */

#include <inf/sitedefs.h>

/* Mandatory site wire - choose one */

/* #include <inf/wire_at1.h> */

/* #include <inf/wire_c.h> */

/* #include <inf/wire_d.h> */

/* #include <inf/wire_g.h> */

/* #include <inf/wire_m.h> */

/* #include <inf/wire_w.h> */

/* Optional site features - choose any combination of */

/* #include <inf/bp_machines.h>*/

/* #include <inf/console_server.h>*/

/* #include <inf/dcs_gentoo_2000.h>*/

/* #include <inf/dhcpd_server.h>*/

/* #include <inf/fhpkgs.h>*/

/* #include <inf/grub.h>*/

/* #include <inf/ipfilter.h>*/

/* #include <inf/iptables.h>*/

/* #include <inf/kdc.h>*/

/* #include <inf/netinf.h>*/

/* #include <inf/ntp.h>*/

/* #include <inf/officedesktop.h>*/

/* #include <inf/printer.h>*/

/* #include <inf/pxe_server.h>*/

/* #include <inf/studentlabs-at.h>*/

/* #include <inf/studentlabs-jcmb.h>*/

/* #include <inf/studentlabs.h>*/

/* #include <inf/studentlabs_bp.h>*/

/* #include <inf/vmwarews.h>*/

/* #include <inf/wireless.h>*/

/* Inventory information */

inv.sno FILL_ME

B–64 Appendix B

inv.allocated FILL_ME

inv.location FILL_ME

inv.manager FILL_ME

/* Only override the owner field if the kit was bought off funds */

/* other than core division funds (eg research grant, personal etc)

*/

/* OVERRIDE(inv.owner) FILL_ME */

/* End of file */

Appendix C

Example of the output source file produced by the system

/* -+- source_files/baked */

/*

baked

Inventory information

Only override the owner field if the kit was bought off funds

other than core division funds (eg research grant, personal etc)

OVERRIDE(inv.owner) FILL_ME

End of file

*/

/* -+- Mandatory Hardware Model */

#include <lcfg/hwbase/hp_6000.h>

/* -+- Mandatory Operating System */

#include <lcfg/os/redhat71.h>

/* -+- Optional Software Extras */

#include <lcfg/opts/serialconsole.h>

#include <lcfg/opts/server.h>

/* -+- Optional Hardware Extras */

#include <lcfg/hwopts/sound_soundblaster.h>

#include <lcfg/hwopts/video_radeon.h>

/* -+- Mandatory Site Specific Details */

#include <inf/sitedefs.h>

/* -+- Mandatory Site Wire */

#include <inf/wire_d.h>

C–65

C–66 Appendix C

/* -+- Optional Site Features */

#include <inf/pxe_server.h>

#include <inf/studentlabs-jcmb.h>

#include <inf/testing.h>

/* -+- mac Address */

dhclient.mac 00:01:02:ae:77:a8

#define USE_PROFILE_PACKAGES

/* -+- Inventory Information */

inv.sno DCS42256

inv.allocated public

inv.location JCMB-1028

inv.manager support

/* -+- End of File */

Appendix D

User Guide

This guide is to be used in conjuction with version 1.0 of the LCFG GUI front
end designed and written by Craig Devlin 25/05/03.

Type perl LCFGinterface at the console to begin.

Source File Selection

You will see a progress bar please be patient whilst the program examines the
LCFG source file directories. From here you will be presented with a window
from which you can choose to edit a source file. If you are editing a machine file
click the machine radio button and select or type the name of the file you wish
to edit. For aspect files click on the aspect radio button and proceed as above.
When you have selected the source file click the accept button.

Source File Configuration

Once accept has been pressed you will be presented with two new windows. One
is the current source file in a plain text format this is for reference purposes whilst
editing. The second window is where you may edit the source file itself.

There are two separate interfaces available, one for machine source file config-
uration and one for aspect source file configuration. I will describe the aspect
interface first.

The aspect interface has three tab headings. The first headers contains a list
of all the header files available under the LCFG environment. Those that are
included in the current source file will be highlighted. To include a header file
in the source file click on the entry in the list. Similarly to remove a header file
from the source file click on a highlighted entry.

The second tab is where configuration details other than include statements may
be entered. The contents of the text entry area will include all the details from the
current source file and may be edited, deleted and added to as fits the situation.

The third and final tab in the interface is for the comments. You may add
comments into this section and they will be output in comment format in the
resultant source file. NB: all comments will be grouped together into a single
large comment displayed at the top of the source file. For comments relating to

D–67

D–68 Appendix D

particular areas of source code information the details may be entered into the
text tab with the normal comment braces (/* */) around the text.

The machine interface works in a similar method to that of the aspect configu-
ration above. You will be presented with a window containing seven tabs. The
first, second third and fourth tabs are edited by selecting entries for the drop
down menus and lists as required. The sixth and seventh tabs are edited as for
tabs two and three above. Tab five: HD Partition is used for configuring the disc
partition of LCFG machines. To edit the partitions check the yes radio button
on the screen and then choose how many physical hard discs are available then
click configure.

A new window will open with a tab for each physical hard disc. Within each
tab there are four section each of which represent a virtual partition. Each of
these may be edited as the user needs. NB the checkboxes at the side indicate
whether there is a virtual partition, it is not neccessary therefore to use all four
partitions. Once editiing is complete click on the accept button to take you back
to the main configuration window. Alternativly click the cancel button to cancel
the partition configuration.

To save your work click on the save button, you will be prompted if you wish
to save, click yes to continue which will save the file. You will now back at the
original source file selection screen, you may edit another file or click the exit
button to exit.

Thank you for using GUI-LCFG.

