
Towards a High-Level Machine
Configuration System
Paul Anderson – University of Edinburgh

ABSTRACT
This paper presents a machine configuration system which stores all configuration parameters
in a central ‘‘database’’. The system is dynamic in the sense that machines reconfigure
themselves to reflect any changes in the database whenever they are rebooted. The use of a
central database allows configurations to be validated, and correct configurations to be
automatically generated from policy rules and high-level descriptions of the network. A
permanent record of every machine configuration is always available and the system is
extensible to handle configuration of new subsystems in a modular way. The paper includes a
review of previously published work and common techniques for cloning and configuring
workstations.

Introduction

When a new machine is installed, it will rarely
be used with the default configuration supplied by
the vendor of the operating system. The partitioning
and allocation of space on the disks, the software
packages to be carried, and the network name and
address are typical configuration parameters that
will be set differently by different sites and for dif-
ferent machines at the same site. In addition to
these basic parameters, most large sites will require
a more extensive customisation of the basic system,
for example running additional or replacement dae-
mon processes such as time synchronisation.

Most vendors provide some kind of installation
procedure which allows the basic configuration
parameters to be set. However, in a typical large
site, these procedures are nearly always inadequate
for one or more of the following reasons:

� The procedures cover only the vendor-
supplied software and are not extensible to
cover local and third-party software.

� The interface to the procedures is often a GUI
and cannot easily be automated for handling
large numbers of systems.

� The procedures are not complete, and further
manual operations (for example, crontab),
or additional hand-editing of configuration
files (for example, inetd.conf), are
required to completely configure the machine.

� The configuration information is stored on the
machine itself so that it must be re-entered
whenever the machine is re-installed, and it is
unavailable for inspection when the machine
is down.

� The procedures are highly vendor-specific and
are not appropriate for use in a heterogeneous
environment.

Sites with a small number of machines, or sim-
ple configuration requirements, sometimes use only

the vendor-supplied procedures, but this means that
machine upgrades or installations require consider-
able manual intervention. Large sites will usually
have developed their own procedures to help over-
come some of these problems, and the following
section surveys some of the techniques that have
been used.

The remainder of the paper describes a
configuration procedure that has been developed for
use in the Computer Science Department at Edin-
burgh University. This stores complete machine
configuration information in a central ‘‘database’’,
allowing configurations to be validated and automati-
cally generated. The system is also modular so that
new subsystems can be added independently to the
configuration procedure.

Background

Most vendor-supplied installation and
configuration tools suffer from all of the problems
listed in the previous section. In many cases,
attempts to simplify installation for small sites (for
example, graphical user interfaces) have caused
further difficulties for large sites. Even where some
provision has been made for large-scale automation
(such as Sun auto-install[1]), the configuration pro-
cess is still inadequate for the other reasons given
above.

The most common technique for dealing with a
large number of machines is cloning. Cloning pro-
cedures are not normally supplied by the vendor, but
different systems have evolved at many large sites
(for example, Ohio State University[2]), all sharing
similar characteristics. A single template file-system
is hand-crafted with the site-specific configuration
information and replicated directly to create a new
machine. Clearly, such a pure cloning process is
only sufficient if there are no machine-specific
configuration parameters, and every machine on the
site has an an identical basic file-system (or there are

1994 LISA – September 19-23, 1994 – San Diego, CA 19

Towards a High-Level Machine Configuration System Anderson

a small number of categories). This approach as
been taken in some cases, such as the Athena [3]
system, but it usually requires unacceptable
modifications to the vendor’s base operating system.

Various schemes have been used for applying
machine-specific changes to the template after (or
during) the cloning operation; for example, the above
Ohio scheme, typecast[4] and mkserv[5].
These are adequate for environments where the
configurations are largely static and similar. How-
ever, they can become unwieldy when there is a
wide variation in the required configurations and/or
frequent changes. It can often be difficult to deter-
mine the configuration that is actually being applied
to an individual machine; in some cases, this infor-
mation might not exist explicitly1; in other cases, it
might exist in a wide range of different files and for-
mats. The lack of modularity in the configuration
process also makes it difficult for different people to
maintain the configuration of separate subsystems,
and changing the configuration of an existing
machine is usually difficult.

Storing the machine-specific configuration
information explicitly in some external database (for
example, sad[6]) is a major improvement, since
the configuration of a particular machine is always
clear and the information is always accessible, even
when the machine is down. There is still the option
of using procedural rules to generate certain
configuration parameters2 but the rules are evaluated
before the machine is actually configured and the
results of the evaluation are visible explicitly in the
database.

The information from such a database can be
used during the cloning process to control the crea-
tion of the file-systems when the machine is being
built. In this case, the machine-specific characteris-
tics are hard-wired into the file-system and the data-
base information is no longer required for the run-
ning of the machine (a static configuration). Alter-
natively, all machines can be created as pure clones
and the configuration information can be read
dynamically from the database as the machines are
running (usually at boot time). If the configuration
information is used in a static way, it is difficult to
change without completely re-cloning the system,
but the machine is not dependent on the availability
of the central database, and no configuration pro-
cedures need to be run at boot time. Dynamic
configuration requires special configuration pro-
cedures (usually run at boot time) and the machine is
dependent on the existence of the central database,

1For example, a particular configuration parameter might
be generated ‘‘on the fly’’ at installation time by a script
which implements some kind of policy rule.

2For example, there may be a rule of the form
‘‘machines belonging the research group always carry
GNU Emacs’’.

but it does allow changes in the database to be
reflected immediately in the actual machine
configuration.

A purely dynamic system is normally impracti-
cal for several reasons:

� Configuration of hardware-related parameters
such as disk partitioning is not possible on a
running system where the disks contain live
data.

� Configuration of very low level system
software (such as basic networking) is difficult
because the machine normally needs the net-
work to be available before it can access the
configuration database.

However, the ‘‘rotting’’ of static systems and
the difficulty of identifying the configuration state of
a particular machine can lead to many problems
which make a dynamic system attractive.

Many vendors are now moving towards
dynamic configuration systems based on object-
oriented technology. The Tivoli ‘‘Management
Environment’’, for example, is an object-oriented
product which is available on several platforms. This
provides a central configuration database and a
‘‘framework’’ into which objects can be slotted to
control the various subsystems in a uniform way.
Hopefully, standards will develop, and become
adopted, so that multiple vendors (and users) can
construct objects which inter-operate across hetero-
geneous systems. Although this provides the most
promising future direction for system configuration,
most vendors do not currently supply such software
as part of their standard operating system package,
and current implementations may be too expensive
and/or inflexible for many sites.

A Simple Dynamic Implementation

The Computer Science Department at Edin-
burgh University runs a network of 300-400 worksta-
tions with about 2000 users. System administration
tools from the department are often adopted on a
wider scale throughout the University. At present,
these machines are mostly Suns (currently being
upgraded to Solaris 2) and X terminals, but the abil-
ity to integrate systems from different vendors is
considered very important and DEC, HP and SGI sys-
tems have all previously been integrated into the net-
work. Particularly within research groups, such as
the LFCS3, systems change rapidly and machine
configurations are very diverse, so it is important to
have a sufficiently flexible infrastructure to support
this type of environment.

The lcfg (‘‘local configuration’’) system [7]
now being used in the Computer Science Department
is a mainly dynamic system with a small amount of
static configuration for the hardware and low-level

3Laboratory for Foundations of Computer Science.

20 1994 LISA – September 19-23, 1994 – San Diego, CA

Anderson Towards a High-Level Machine Configuration System

parameters. All information that is necessary to dis-
tinguish one machine from another is contained in
the central database and every machine can be
rebuild or duplicated using just the information from
the database together with the generic system
software4. Only Suns are currently being configured
with lcfg, but it is intended that the system be
portable, presenting a uniform interface to the
configuration process across different platforms. The
static part of the configuration which interfaces with
Sun auto-install is the only part of the system which
is expected to be significantly different on different
platforms.

The static part of the configuration occurs when
a machine is installed. Information is read from the
database and used to construct auto-install
configuration files determining the type of machine,
the layout of the disks, the base software
configuration, and other static parameters. When the
machine reboots for the first time after an installa-
tion, a further script performs any remaining static
configuration. This might include addition of clients
or loading of additional software across the network.
All machines can be installed entirely automatically,
complete with all the necessary local customisation,
simply be creating the database entries and booting
the system from an install server.

Every time the machine boots, a script reads
the configuration database to determine the subsys-
tems that should be configured on that machine. This
executes a script for each subsystem (for example,
DNS or xntp) which consults the database for
relevant parameters and dynamically configures the
subsystem accordingly. New subsystems can there-
fore be incorporated into the configuration process
simply by adding their names to the database entry
for a specified machine. The dynamic configuration
allows machines to be reconfigured very quickly to
adapt to changing requirements, or work around
failed hardware.

The Configuration Database

The configuration scripts use common routines
to consult the database for resources of the form

host.subsystem.attribute = value

In theory any database could be used to hold these
resources and any mechanism could be used to dis-
tribute them to the client machines. A large rela-
tional database might be a useful tool for extracting
information about machine configurations, and mak-
ing complicated changes to groups of machines, but
it is not strictly necessary and, at present, a simple
flat file is used for each machine. The resources are
distributed and supplied to the client machines using
NIS[8]. NIS is not ideal for this purpose, since it
involves propagation of the entire database every

4Obviously backups of any user data are also required.

time a single change is made, and all system
software below the level of NIS must be statically
configured. We hope to eventually develop a special
protocol that operates at a lower level, but NIS is
currently proving adequate as a resilient method of
supplying machines with the necessary resources.

The information in the source files is deli-
berately of a very low level. As described later, the
eventual aim is to generate this information automat-
ically from a higher level description of the machine
and its relationship to other machines in the network.
At present, the files are edited by hand and passed
through the C preprocessor which allows some
degree of structure to be introduced, and machines
with similar configurations to share common blocks
of resources. A total of about 400 different
resources are available for configuration of various
different subsystems, but many of these will nearly
always be used in their default values and a typical
large server requires about 70-100 resources to fully
describe the configuration. Clients usually require
about half this number, and the use of the C prepro-
cessor reduces the configuration description even
further (some examples are given in the appendix).

Independent processes can very easily extract
information from the database and one important
application of this is to validate the consistency of
the resources. A simple Perl script scans the
resources for a specified machine and performs vari-
ous consistency checks; the script is continually
being extended to identify the most common
configuration errors and this allows many problems
to be detected before the machine installation has
started. Since information is available on all
machines, inter-machine problems can be located
that might not normally be detected until a much
later stage. In particular, it is possible to check
before removing a machine from the network, that
all dependencies on that machine have been
removed. Not all of these dependencies are immedi-
ately obvious; for example, every ethernet segment
must include a host supplying bootparam service,
and removing the last bootparam server from an
ethernet segment should cause a warning to be gen-
erated. Such checks can be used to identify weak
points in the network by answering questions, such
as ‘‘what happens if a particular server fails’’.

Some of the resources are purely informational
and are used for administrative purposes (for exam-
ple, the owner and location of the machine). One
interesting application is an experimental World
Wide Web service which makes information on all
machines available over the World Wide Web by
automatically querying the database when the page
for a particular machine is accessed5. The

5http://www.dcs.ed.ac.uk/cgi–bin/
hosts/INDEX

1994 LISA – September 19-23, 1994 – San Diego, CA 21

Towards a High-Level Machine Configuration System Anderson

information in the database allows hyper-text links
to be generated between clients and their servers,
and between personal workstations and the home
pages of their owners.

The Configurable Subsystems

Each configurable subsystem on a machine (for
example, a printer) is a member of a particular class
and the configuration for all subsystems in a class is
performed by the same class script. All the class
scripts share a number of common routines and are
written in a stylised manner; this allows new classes
with simple configuration requirements to be added
very easily. A single subsystem called boot starts
when the system boots. The resource
boot.services is consulted to determine all the
other subsystems that should be configured at boot
time and the appropriate class scripts are executed.
Provision is also made to execute these scripts
manually, or at regular intervals (from cron).

There are currently about 30 different classes
implemented, of which the following is selection:

auth configures all the authorisation of access
to the machine. This controls, for exam-
ple, the groups of users that are permitted
to log in, and the machines to be included
in hosts.equiv file.

amd controls the amd automounter, specifying
the cluster that is to be used and
hence determining the servers from which
the various file-systems will be mounted.

dns controls the type of DNS service to be
provided and (where appropriate) specifies
the servers to be used.

www controls the World Wide Web server.

xdm controls the xdm subsystem specifying
which X terminals are to be managed and
configuring some of the parameters of the
login session. A separate subsystem con-
trols the font server.

inet controls the services that are managed by
inetd, including the access control
which is managed by the tcpd wrapper
program.

The above subsystems run only when the
machine boots, and any change in the database
resources is not reflected in the corresponding sub-
system until the machine is rebooted (or the subsys-
tem is manually restarted). These are mostly one-off
configurations (such as auth) or daemons which
start once and run continuously (such as www or
xdm). Some subsystems need to be run at regular
intervals (for example, backups) and the boot sub-
system can arrange to schedule these to run from
cron. In particular, a group of processes runs every
night to perform any necessary updates to the local
file-systems:

updatelf uses lfu [9] to update the local file-
systems with any changes that have been
made to the master copies of locally
maintained software. The configuration
of this subsystem determines the software
packages that are to be carried by the
machine.

patch applies any new systems patches that
have been installed which are relevant to
the machine.

update makes any necessary modifications to
files in the root file-system to track the
latest static configuration.

Most class scripts also accept additional argu-
ments to stop and restart the subsystem, and to
display logging and status information. A client pro-
gram called om, and its associated daemon omd,
provide a way to execute these additional methods
remotely, including an authorisation scheme with
access control based on the user, the host, the sub-
system, and the method. This allows users to be
given permission, for example, to stop and restart
certain daemons running on their personal worksta-
tion. One possibility is that om will be extended to
understand netgroups of machines, allowing subsys-
tems to be easily restarted on a whole cluster of
machines with a single command.

High Level Configuration

One of the most important aspects of machine
configuration is to specify the role of a machine
within the network. This includes the relationship
between a client and the servers which supply vari-
ous different services. Typically, these will include
file services of various types (home directories, pro-
gram binaries), name service (DNS), time synchroni-
sation (xntp), font service and others. If a client
and server are configured independently, then there
is no guarantee that the configurations are compati-
ble; for example, a client can quite easily be
configured to expect file service from a machine
which is not exporting the required files, or even
from a machine that does not exist! Even within a
single machine, there are similar dependencies offer-
ing scope for errors when different subsystems are
configured using different methods; for example, if a
particular machine is to run a World Wide Web
server, then the appropriate software must be avail-
able on the machine.

Using a common source of configuration infor-
mation allows most of these dependencies to be
checked automatically. However, the low level
nature of the raw configuration resources means that
production of configuration files is awkward and
error prone. Ideally, we would like to describe the
relationship between machines at a much higher
level and have the low level configuration informa-
tion generated automatically. For example:

22 1994 LISA – September 19-23, 1994 – San Diego, CA

Anderson Towards a High-Level Machine Configuration System

� Machine A is the name server for the research
group.

� Machine B is a member of the research group.
	 Machine C is a member of the research group.

From the above specification, it is possible to
generate all the necessary low level configuration
information to load the name-server software, and
start the name-server subsystem, on machine A, and
configure the other machines to act as clients of this
machine. An error (or at least a warning) would be
expected for any machines which did not have a
name-server.

The simple example given above can be
accomplished quite easily, using features of the C
preprocessor, with the existing implementation.
Changing machine A to some other machine should
cause the software and the daemon to be transferred
to the other machine, and clients to change their
resolv.conf files to point to the new server.

In addition to the essential rules, like the
name-server example above, it is also very useful to
be able to specify policy rules in a similarly explicit
manner. For example:

 Students are not allowed to log in to personal
workstations of staff members.

� File-servers which are updating local file-
systems during the night should do so at dif-
ferent times to avoid network congestion.

Such policy rules are frequently contravened in
practice because they are not critical to the operation
of the system and mistakes can easily go unnoticed.
Using the rules to actually generate the machine
configuration guarantees that they will be enforced.

As the rules and their interactions become more
complex, the need for a special-purpose
configuration language to replace the C preprocessor
quickly becomes apparent. Designing such a
language [10] is not easy for several reasons; it must
be able to express high-level rules in a clear, explicit
way, but be capable of generating low level
configuration information from these rules. Since
the configuration subsystems must be extensible, the
language itself must be extensible so that new rules
can be added to control new subsystems, or new
features of existing subsystems. Possible designs for
such a language are currently under investigation.

Conclusions & Further Work

The use of a dynamic configuration system
storing parameters in a central database has been a
big improvement over the previous static system. In
particular:�

The ease with which configurations can be
changed, and machines can be completely
rebuilt, means that machine configurations do
not ‘‘rot’’ and are always up-to-date.

 New subsystems can easily be introduced and
configured onto existing machines without

interfering with other subsystems on the
machine.

� The ability to validate and examine explicit
machine configurations from the database has
reduced the number of errors that are caused,
for example, by forgetting some dependency
when removing a server.

� Since the machines automatically reflect the
configuration in the database, it is possible to
have some confidence that policies specified
in configuration rules are actually being
enforced on the machines. This provides an
improvement, for example, in security.

Disadvantages include the longer time required
to boot a machine and the difficulty of manually
creating correct low-level configuration information.

The ability to specify configurations and poli-
cies at a much higher level is a very useful facility.
The best way in which to implement and exploit this
possibility is an area for further investigation. In the
short term, incorporation of further subsystems, port-
ing to other platforms, and improvements to the
mechanism for storing and distributing the resources
are likely areas of future work.

Availability

Copies of this paper and associated technical
reports are available via WWW from
http://www.dcs.ed.ac.uk/staff/paul or
pub/paul/papers on ftp.dcs.ed.ac.uk
(ftp).

Acknowledgements

Thanks to all the systems staff of the Computer
Science Department for long discussions on the
design of the configuration system and for suffering
all the machines with broken configurations during
the development and testing.

Author Information

Paul Anderson is a graduate in pure mathemat-
ics. He has taught computer science and managed
software development before becoming involved in
systems administration. He is currently employed as
Systems Development Manager with the Laboratory
for Foundations of Computer Science, where he is
responsible for the research laboratory’s network. He
is also working with other system managers to
develop the computing facilities within the depart-
ment and the University. Paul can be reached by
mail at:
The Laboratory for Foundations of Computer Science
Department of Computer Science
University of Edinburgh
King’s Buildings
Edinburgh EH8 3JZ
U.K.
His email address is: paul@dcs.ed.ac.uk .

1994 LISA – September 19-23, 1994 – San Diego, CA 23

Towards a High-Level Machine Configuration System Anderson

References

1. Sun Microsystems, ‘‘Automatic installation,’’
in Solaris 2.3 system configuration and installa-
tion guide, 1993.

2. George M Jones and Steven M Romig, ‘‘Clon-
ing Customized Hosts (or Customizing Cloned
Hosts),’’ Proceedings of the LISA V Confer-
ence, pp. 233-237, Usenix, 1991.

3. Jennifer G Steiner and Danial E Geer, Network
services in the Athena environment, Project
Athena, Massachusetts Institute of Technology,
Cambridge, MA 02139.

4. Elizabeth Zwicky, ‘‘Typecast: beyond cloned
hosts,’’ Proceedings of the LISA VI Conference,
pp. 73-78, Usenix, 1992.

5. Mark Rosenstein and Ezra Peisach, ‘‘Mkserv –
Workstation customization and privatization,’’
Proceedings of the LISA VI Conference, pp.
89-95, Usenix, 1992.

6. Rick Dipper, ‘‘Management information and
decision support tools for Unix systems
administration.,’’ Proceedings of UKUUG/SUG
Conference, pp. 143-153, UKUUG, 1993.

7. Paul Anderson, ‘‘Local system configuration for
syssies,’’ CS-TN-38, Department of Computer
Science, University of Edinburgh, Edinburgh,
August 1991. Available by anon ftp as file
pub/paul/papers/tn38.ps from site
ftp.dcs.ed.ac.uk .

8. Sun Microsystems, ‘‘The Network Information
Service,’’ in System and network administra-
tion, pp. 469-511, Sun Microsystems, 1990.

9. Paul Anderson, ‘‘Managing program binaries in
a heterogeneous UNIX network,’’ Proceedings
of LISA V Conference, pp. 1-9, Usenix, 1991.

10. Bent Hagemark and Kenneth Zadeck, ‘‘Site - a
Language and System for Configuring Many
Computers as One Computing Site,’’ Proceed-
ings of the LISA III Conference, pp. 1-13,
Usenix, 1989.

24 1994 LISA – September 19-23, 1994 – San Diego, CA

Anderson Towards a High-Level Machine Configuration System

Appendix 1: Configuration for a Simple Server

/**
Staffa

**/

#include <lfcs.h>

/* Resources for information only */

info.type server
info.location the machine halls
info.make Sun
info.model 10/40
info.owner LFCS
info.memory 16 16 16
info.sno 411m1238
info.hostid 727099f2
info.disks internal wren
info.disktype_internal SUN1.05 cyl 2036 alt 2 hd 14 sec 72
info.disksize_internal 1Gb
info.diskdev_internal c0t3d0
info.disktype_wren CDC Wren VII 94601-12G cyl 1929 alt 2 hd 15 sec 68
info.disksize_wren 1Gb
info.diskdev_wren c1t1d0

/* Statically configured resources */

install.system_type server
install.arch sun4m
install.client_arch sun4c sun4m
install.local B_INSTALL_CONFIG
install.interfaces le0 qe0
install.hostname_le0 HOSTNAME
install.hostname_qe0 HOSTNAME-j
install.updatelf true
install.install_server true
install.filesystems root swap var usr export local
install.fs_root c0t3d0s0 32 /
install.fs_swap c0t3d0s1 64 swap
install.fs_var c0t3d0s3 64 /var
install.fs_usr c0t3d0s4 auto /usr
install.fs_install c0t3d0s7 350 /export/install
install.fs_export c0t3d0s5 free /export
install.fs_local c1t2d0s2 all /disk/local

/* Dynamically configured resources */

auth.rootpwd LFCS_SERVER_PASSWD
auth.users LFCS_SERVER_USERS
auth.equiv LFCS_EQUIV
auth.rhosts LFCS_RHOSTS
amd.cluster HOSTNAME.dcs.ed.ac.uk
dns.type server
yp.type slave
yp.servers HOSTNAME
boot.services SERVER_SERVICES
boot.run SERVER_RUN
cron.objects boot
cron.run_boot 0 0 * * *
updatelf.fs local
updatelf.fs_local sun4-51 share
updatelf.netgroups delete copy
updatelf.action_copy copy

1994 LISA – September 19-23, 1994 – San Diego, CA 25

Towards a High-Level Machine Configuration System Anderson

updatelf.action_delete delete
nfs.exports local
nfs.fs_local /disk/local
nfs.options_local -o ro=machines

Appendix 2: Configuration for a Simple Diskless Client

/***
* Gasker
**/

#include <lfcs.h>

/* Resources for information only */

info.type private
info.owner paul
info.location 1612
info.make Sun
info.model Classic
info.sno 302U4308
info.hostid 8001d534

/* Statically configured resources */

install.system_type client
install.arch sun4c
install.interfaces le0
install.hostname_le0 HOSTNAME
install.root B_SERVER:/export/root/HOSTNAME
install.swap B_SERVER:/export/swap/HOSTNAME

/* Dynamically configured resources */

mail.root paul
auth.rootpwd LFCS_CLIENT_PASSWD
auth.users LFCS_CLIENT_USERS
auth.equiv LFCS_EQUIV
auth.rhosts LFCS_RHOSTS
amd.cluster B_SERVER.dcs.ed.ac.uk
dns.servers B_SERVER
cron.objects boot
cron.run_boot 0 4 * * *

26 1994 LISA – September 19-23, 1994 – San Diego, CA

