
LCFG Basics

Kenneth MacDonald
<K.MacDonald@ed.ac.uk>

Agenda
● History
● Architecture
● Uses
● Syntax
● Break
● Worked Examples

History
● Started in 1994 (LISA 8 paper) in the

Computer Science department of The
University of Edinburgh.

● Production tool (1000+ machines) and
research testbed.

● Capable of very comprehensive
configuration but (traditionally) steep
entry curve.

● See http://www.lcfg.org/

http://www.lcfg.org/

Architecture
Com

ponents

Sources

Com
piler

XML

LCFG “Component”
● A set of resources – basically key/value

pairs.
● Optional templates for config files
● Optional control code, to manage

daemons,
➔ For example, stop/start/configure, based on

a ...

➔ framework provided by LCFG – shell or perl.

The LCFG Compiler
● Makes the XML profile by processing

simple text files containing the resource
specifications.

● Handles “classing” to specify resources
for groups (“include” files).

● Handles (some) conflicts between
resource specifications for different
groups.

● More complex things like relating
resources between client and server
machines (spanning maps).

● Notice that all resources for all hosts
come from the central LCFG (web)
server.

● This machine holds all the information
about the configuration of all machines.

● Whenever things are changed on the
server, the clients pick up the change as
soon as possible (usually immediately).

● We can change the configuration of
whole groups of machines by changing
common files.

The Client Component
● Watches for change notifications from a

server.
● Fetches the resources from a web server

(in a simple XML format called the
“profile”).

● Tells the components whose resources
have changed, so that they can
“reconfigure”.

● LCFG is usually presented from the “top
down” -
➔ LCFG manages the whole site installation

(including servers and relationships).

➔ LCFG is the only thing which changes the
configuration of any machine (prescriptive).

➔ Clients run ~50 “components” ...

“Heavyweight” LCFG

But ...
● LCFG is capable of this “top down”

approach, which has lots of benefits, but
...
➔ This is very committing for people

starting out.
➔ It is difficult to learn the system

starting in this way.

● It is possible to use LCFG in a very
“lightweight way” -
➔ One or two components run on each client to

manage specific configuration files.

➔ Other parts of the configuration are
managed in some other way.

➔ This can gradually be extended to
encompass more of the configuration as and
when required and understood

➔ Unlike simpler tools, this is possible without
completely changing the tool.

“Lightweight” LCFG

The whole
configuration task is

now “reduced” to
managing the

configuration data on
the server

LCFG Syntax
● Setting resources
● Mutating resources
● Including other files
● Using the C Preprocessor

Setting Resources

component.resource value

Setting Resources

client.poll 10m+30s

Mutating Resources

!component.resource MACRO(expression)

Mutating Resources

!server.srcpath mADD(/tmp)

Including Headers

#include <header.h>

C Preprocessor

/* Linux clients need tweaks */
#ifdef LINUX
#include <linux.h>
#endif /* LINUX */

Documentation
● The Complete Guide to LCFG
● Unix manual page for each installed

component on a system
➔ man lcfg-file

● Generated documentation for all
components on the web site

Hands On
● Start the VMWare Player image
● Log in as user lcfgfc6, password lcfgfc6
● Run startx
● Run sudo bash in one of the xterm

windows
● Change directory to

/var/lcfg/conf/server/source
● Our profile source is a text file called

localhost

Initial source profile
● The ./localhost file is our source profile
● Look at its contents

➔ It is a plain text file

➔ It has a C style comments

➔ It includes several “header” files

● We will be changing this file in the
coming examples ...

Example 1-1
● We have been tasked to maintain a

custom “message of the day” to all our
clients

● This is done by placing the message in a
file called /etc/motd

● What does this file currently contain?

Example 1-2
● Copy /root/workshop/part1/example1 to

./localhost
● Check the contents of /etc/motd

➔ Has it changed?

● Look at the localhost file contents
➔ The top of the file is as before

● We used the file component to manage
our file

● How did it actually happen?

Example 1-3
● In the other window change

directory to /var/lcfg/log
● Look at ./server

➔ See the entry for the compilation of our
profile

● Look at ./client
➔ See the entry for our new profile and

the file component’s configure method
being run

● Look at ./file
➔ See our file being managed

Example 2
● Look at ls -l /etc/motd

➔ Group lcfg?

● Copy example2 to ./localhost
● Check the three log files again
● Look at ls -l /etc/motd

➔ That’s better!

Example 3
● All computers have the same message

➔ Users need to know which computer they
logged on to!

● Copy example3 to ./localhost
● Check contents of /etc/motd
● The computer name has been merged

into the message
● Any LCFG resource can be referenced by

any other resource

Example 4
● The file component can manage more

than just plain text files
● Copy example4 to ./localhost
● Look at the source profile

➔ Creates a directory called
/etc/message_of_the_day

➔ Creates a symbolic link inside the directory

● Check if the symbolic link is really there

Example 5-1
● The file component can also use external

templates to merge with resources to
manage managed files

● Copy sshd_config.tmpl to
/root/sshd_config.tmpl

● Look at the template, diff it with
/etc/ssh/sshd_config
➔ The extra lines control the file component

➔ The port number is only managed if the
resource is set

Example 5-2
● Copy example5 to ./localhost
● Look at the source profile
● Look at /etc/ssh/sshd_config

➔ Our LCFG comment is near the top

➔ No managed port setting though

● We didn’t set the resource in the source
profile!

● Try ssh’ing to localhost to check sshd is
working

Example 6-1
● Copy example6 to ./localhost
● Look at the source profile
● It tells sshd to listen on port 222 rather

than the default 22
● Check /etc/ssh/sshd_config for the port

setting
● Try ssh -p 222 localhost
● Why doesn’t it work?

Example 6-2
● Run /etc/init.d/sshd reload
● Now try ssh -p 222 localhost
● Now try ssh localhost
● The file component only goes so far ...

 1

LCFG Basics

Kenneth MacDonald
<K.MacDonald@ed.ac.uk>

 2

Agenda
● History
● Architecture
● Uses
● Syntax
● Break
● Worked Examples

 3

History
● Started in 1994 (LISA 8 paper) in the

Computer Science department of The
University of Edinburgh.

● Production tool (1000+ machines) and
research testbed.

● Capable of very comprehensive
configuration but (traditionally) steep
entry curve.

● See http://www.lcfg.org/

Some external use but low profile - unlike some things, never
promoted.

The University of Edinburgh is now deploying MacOS X and Linux
desktops via LCFG across the University.

 4

Architecture
Com

ponents
Sources

Com
piler

XML

At least one source file per client named after its hostname. Other
source files specify classes of clients. For example, all clients in one
department share the same mail smart relay. Yet more source files
configure aspects or options available to be included. For example,
run an LCFG server or install a third party application.

The compiler generates an XML profile for each client, and notifies the
client when it changes (single UDP packet on port 732).

Upon notification (and polling) the client retrieves the XML profile via
HTTP and stores the contents in a local database. Each LCFG
component is notified of resources which have changed.

The time from committing a change to a source file to the client being
reconfigured is usually a matter of seconds.

 5

LCFG “Component”
● A set of resources – basically key/value

pairs.
● Optional templates for config files
● Optional control code, to manage

daemons,
➔ For example, stop/start/configure, based on

a ...

➔ framework provided by LCFG – shell or perl.

We use the term resource rather than variable. Resources are owned
by components and must be defined in their schema. Unknown
resources throw errors in the compiler. The LCFG framework defines
many standard resources which all components inherit.

A component’s executable code is stored in a file named the same as
the component in the/usr/lib/lcfg/components directory. “Helper”
programs are sometimes used to keep the shell or perl code simple.

Components define at least the start, stop and configure methods.

 6

The LCFG Compiler
● Makes the XML profile by processing

simple text files containing the resource
specifications.

● Handles “classing” to specify resources
for groups (“include” files).

● Handles (some) conflicts between
resource specifications for different
groups.

● More complex things like relating
resources between client and server
machines (spanning maps).

If we wanted to, we could just list all the resources for each machine
separately.

It’s more maintainable to build a library of options which are included
where appropriate,

 7

● Notice that all resources for all hosts
come from the central LCFG (web)
server.

● This machine holds all the information
about the configuration of all machines.

● Whenever things are changed on the
server, the clients pick up the change as
soon as possible (usually immediately).

● We can change the configuration of
whole groups of machines by changing
common files.

 8

The Client Component
● Watches for change notifications from a

server.
● Fetches the resources from a web server

(in a simple XML format called the
“profile”).

● Tells the components whose resources
have changed, so that they can
“reconfigure”.

When the server compiles a new XML profile it sends a UDP notification
packet to port 732 on the client. If this packet doesn’t get through
(firewalls, client offline, etc.) then the client will check for a new XML
profile at start up and at an configurable polling interval.

The client processes the XML profile and stores component resources
in a database which the LCFG framework automatically makes
accessible to all components. The list of packages (if defined) is
handled separately and is stored in a text file for whichever
component (or other system service) is responsible for package
management.

The client component runs the configure method of each component
which owns changed resources, although the method called for each
component is configurable like everything else!

 9

● LCFG is usually presented from the “top
down” -
➔ LCFG manages the whole site installation

(including servers and relationships).

➔ LCFG is the only thing which changes the
configuration of any machine (prescriptive).

➔ Clients run ~50 “components” ...

“Heavyweight” LCFG

Informatics at the University of Edinburgh runs LCFG like this. Not only
all end user clients, but all servers are installed and configured by
LCFG.

Benefits include guaranteed configurations (reliability), and less work
(no manual changes).

You don’t have to do this - you can use it just to configure bits of your
clients

 10

But ...
● LCFG is capable of this “top down”

approach, which has lots of benefits, but
...
➔ This is very committing for people

starting out.
➔ It is difficult to learn the system

starting in this way.

A typical desktop client might have ~2500 resources, many of which
could make the client unusable if they’re incorrectly set. New adopters
quickly run into “cannot see the wood for the trees” syndrome.

 11

● It is possible to use LCFG in a very
“lightweight way” -
➔ One or two components run on each client to

manage specific configuration files.

➔ Other parts of the configuration are
managed in some other way.

➔ This can gradually be extended to
encompass more of the configuration as and
when required and understood

➔ Unlike simpler tools, this is possible without
completely changing the tool.

“Lightweight” LCFG

You can start out with less than a hundred resources, most of which
are predefined by the LCFG framework. Most invalid values won’t
disable your computer.

Your existing management framework can continue to coexist.

 12

The whole
configuration task is

now “reduced” to
managing the

configuration data on
the server

 13

LCFG Syntax
● Setting resources
● Mutating resources
● Including other files
● Using the C Preprocessor

 14

Setting Resources

component.resource value

The component name is separated from the resource name by a
period, Therefore component and resource names cannot contain
periods.

Everything after the space(s) following the resource name is assigned
to the resource.

Some resources have can have multiple values keyed on “tags”
allowing arrays to be constructed. The file component we will be
looking at shortly uses tags. Tags are separated from resources by an
underscore. For example,

component.resource_tag value

 15

Setting Resources

client.poll 10m+30s

This tells the client component to poll the server for changes to the
XML profile every ten minutes with a 30 second randomisation.

The component schema files can optionally supply a validation macro
for each resource. The compiler uses these to prevent invalid values
getting into the XML profile. See pages 97 and 98 of the guide for
more on validations.

 16

Mutating Resources

!component.resource MACRO(expression)

The LCFG compiler does not allow the same resource to be set twice.
Instead its value must be mutated. The simplest mutation is to set a
new value by using the mSET() macro..

A description of the built in mutation macros can be found on page 42
of the guide.

Advanced LCFG users can write their own mutation macros.

 17

Mutating Resources

!server.srcpath mADD(/tmp)

The mADD() macro appends something to a space separated list.

In this case, we’re telling the LCFG server component (compiler) that it
should also look for client source files in the /tmp directory.

 18

Including Headers

#include <header.h>

“Header” files allow you to repeat the same code across multiple
clients.

The LCFG syntax remains the same no matter the source file.

The compiler keeps track of the derivation of resources so you can see
in which file it was set.

The compiler also records dependencies, so that if a header file
changes, all clients which depend on it have their XML profiles
updated.

 19

C Preprocessor

/* Linux clients need tweaks */
#ifdef LINUX
#include <linux.h>
#endif /* LINUX */

The source files are passed through the C preprocessor as part of the
compilation process so you can make use of most of its features.

Comments are encouraged to document sources, but are not
transferred to the clients. C++ comments (//) are not supported.

You should use macros to guard header files from being included
twice.

You can use #error to force a compilation to fail.

 20

Documentation
● The Complete Guide to LCFG
● Unix manual page for each installed

component on a system
➔ man lcfg-file

● Generated documentation for all
components on the web site

The online copy of “The Complete Guide to LCFG” contains Unix
manual pages for most components and supporting utilities.

The component manual page names have “lcfg-” prepended to the
component name.

Full generated documentation for all core components can be found by
following the [info] links on the release download pages on the
website.

 21

 22

Hands On
● Start the VMWare Player image
● Log in as user lcfgfc6, password lcfgfc6
● Run startx
● Run sudo bash in one of the xterm

windows
● Change directory to

/var/lcfg/conf/server/source
● Our profile source is a text file called

localhost

You do not have to be running an X11 environment for this first hands
on session, but you will for the next one.

The lcfgcf6 user has sudo access to everything.

The LCFG server is configured to look for client sources in
/var/lcfg/conf/server/source which is the default location.

Ignore any files called install*. These are not used in this exercise, but
are support files for installing a client from “bare iron”.

 23

Initial source profile
● The ./localhost file is our source profile
● Look at its contents

➔ It is a plain text file

➔ It has a C style comments

➔ It includes several “header” files

● We will be changing this file in the
coming examples ...

/* lcfg example host source profile */

#include <local/site.h>

#include <lcfg/os/minimal.h>

#include <lcfg/hw/vmware_ws5.h>

#include <lcfg/options/lcfg-server.h>

The initial source profile only includes some the header files. They
contain resource settings which define a vanilla minimal LCFG client
running in a VMWare virtual machine, but with the extra optional
feature of running an LCFG server too.

We will not be looking inside any of these header files during this part
of the workshop.

 24

Example 1-1
● We have been tasked to maintain a

custom “message of the day” to all our
clients

● This is done by placing the message in a
file called /etc/motd

● What does this file currently contain?

Since we have only one client, we will be changing its individual
profile. In the real world, we’d most likely be changing a header file
which all of our clients include.

You should find that the /etc/motd exists, but is empty.

 25

Example 1-2
● Copy /root/workshop/part1/example1 to

./localhost
● Check the contents of /etc/motd

➔ Has it changed?

● Look at the localhost file contents
➔ The top of the file is as before

● We used the file component to manage
our file

● How did it actually happen?

All the example files for this part of the workshop are stored in root’s
home in the workshop/part1 directory. You need to be running as
root to be able to write to the /var/lcfg/conf/server/sources
directory.

/etc/motd should now contain “Welcome to the LCFG tutorial.”.

Here’s the relevant new lines in the localhost file ...

!file.files mADD(example)

file.file_example /etc/motd

file.type_example literal

file.tmpl_example Welcome to the LCFG tutorial.

We tag the file resources with “example” to differentiate from other
files the file component may be managing.

First we tell the file component that we have another file to manage
and tell it what we will be using as its tag. Then we can supply the full
path to the file, the type of the file and its contents (since it’s of type
“literal”).

 26

Example 1-3
● In the other window change

directory to /var/lcfg/log
● Look at ./server

➔ See the entry for the compilation of our
profile

● Look at ./client
➔ See the entry for our new profile and

the file component’s configure method
being run

● Look at ./file
➔ See our file being managed

Components by default (and convention) log to
/var/lcfg/log/<component>.

The server log should have something like
05/06/07 12:34:56: processing: localhost [1/1, pass 1]

05/06/07 12:34:56: 0 error(s), 0 warnings(0) (XML published)

showing the compilation was successful and the XML profile passed to
the web server.

The client log should have something like
05/06/07 12:34:57: new profile:
http://localhost.localdomain/profiles/localdomain/localhost/XML/profile.xml

05/06/07 12:34:57: last modified Tue June 5 12:34:56 2007

05/06/07 12:34:57: profile accepted: 1811efa86304e96a97716f769b97c7654

05/06/07 12:34:57: reconfiguring component: file.configure

05/06/07 12:34:57: [OK] file: configure

The client was notified of the new profile by the server (UDP:732),
downloaded it and ran the configure method of the file component. It
also stored an identifier for the particular version of the profile in case
it received a later notification from another server.

The file log should have something like
05/06/07 12:34:57: >> configure

05/06/07 12:34:57: configuration changed: /etc/motd

 27

Example 2
● Look at ls -l /etc/motd

➔ Group lcfg?

● Copy example2 to ./localhost
● Check the three log files again
● Look at ls -l /etc/motd

➔ That’s better!

Originally the file had root as its owner and group. Now the group is
set to “lcfg”.

Remember the source files are in /root/workshop/part1.

The example2 file adds the following lines

file.owner_example root

file.group_example root

file.mode_example 0644

Note that the mode entry must start with a leading zero.

 28

Example 3
● All computers have the same message

➔ Users need to know which computer they
logged on to!

● Copy example3 to ./localhost
● Check contents of /etc/motd
● The computer name has been merged

into the message
● Any LCFG resource can be referenced by

any other resource

The only change in this example is to the contents of the motd file.

file.tmpl_example Welcome to the LCFG tutorial (running
on <%profile.node%>).

The value of the referenced resource is used to customise the contents
of the file. This process is done by the LCFG compiler on the server,
not by the client.

See page 47 of the guide for more on referencing resources.

 29

Example 4
● The file component can manage more

than just plain text files
● Copy example4 to ./localhost
● Look at the source profile

➔ Creates a directory called
/etc/message_of_the_day

➔ Creates a symbolic link inside the directory

● Check if the symbolic link is really there

!file.files mADD(example1)

file.file_example1 /etc/message_of_the_day

file.type_example1 dir

file.owner_example1 root

file.group_example1 root

file.mode_example1 0755

!file.files mADD(example2)

file.file_example2 <%file.file_example1%>/motd

file.type_example2 link

file.tmpl_example2 /etc/motd

We chosen tags example1 and example2 for the directory and
symbolic link. Their type resources are set to “dir” and “link”.

The directory does not need a “tmpl” resource. The symbolic link uses
the “tmpl” resource to specify its target, and the directory’s path for
its location by referencing the appropriate resource.

Even although the original /etc/motd file is not configured in this
profile notice that it has not been put back to its original state. It still
has our message in it – we call this “tattooing”. The file component
does not keep track of objects it used to manage and undo the
operations if it no longer manages them.

 30

Example 5-1
● The file component can also use external

templates to merge with resources to
manage managed files

● Copy sshd_config.tmpl to
/root/sshd_config.tmpl

● Look at the template, diff it with
/etc/ssh/sshd_config
➔ The extra lines control the file component

➔ The port number is only managed if the
resource is set

Attempting to store larger file directly in the profile quickly becomes
inefficient. To avoid this, we can supply a template of the file and
instruct the file component to use this on the client. In this case
resource referencing takes place on the client rather than in the
compiler on the server.

To examine the differences between the original and template files do

diff -u /etc/ssh/sshd_config /root/sshd_config.tmpl

A comment has been added warning that this file is being managed by
LCFG and shouldn’t be edited. Some template control code has also
been added

<%if: <%v_port%>%><%\%>

Listening port configured by LCFG

Port <%v_port%>

<%end:%><%\%>

Only if the LCFG profile has a value for the “file.v_port” resource set
will the comment and the Port directive be added to the file.

See page 84 onwards in the guide for a description of the LCFG
template processor syntax.

You would normally distribute the template file as part of a package or
some other method. In this case we copy it into place by hand to
emphasise that the file component doesn’t do this for you.

 31

Example 5-2
● Copy example5 to ./localhost
● Look at the source profile
● Look at /etc/ssh/sshd_config

➔ Our LCFG comment is near the top

➔ No managed port setting though

● We didn’t set the resource in the source
profile!

● Try ssh’ing to localhost to check sshd is
working

!file.files mADD(example)

file.file_example /etc/ssh/sshd_config

file.type_example template

file.tmpl_example /root/sshd_config.tmpl

file.owner_example root

file.group_example root

file.mode_example 0600

!file.variables mADD(port)

This time the “type” resource is set to “template” and the “tmpl”
resource points to the location on the client of the template file.

We remember that sshd is sensitive to the permissions on its config file
so set them correctly.

Finally, we add a our “port” tag to the file component’s list of
variables.

Check you can run ssh localhost and log on. We get our message of
the day issued to us!

 32

Example 6-1
● Copy example6 to ./localhost
● Look at the source profile
● It tells sshd to listen on port 222 rather

than the default 22
● Check /etc/ssh/sshd_config for the port

setting
● Try ssh -p 222 localhost
● Why doesn’t it work?

The only relevant change is the addition of

file.v_port 222

which sets our “port” variable, hopefully resulting in sshd listening on
port 222 rather than the default 22.

The /etc/ssh/sshd_config file should now have the following lines

Listening port configured by LCFG

Port 222

The “-p” option to ssh specifies the port that the remote sshd server is
listening on.

We get no response because all that LCFG has done is change the
contents of a configuration file. The file component has no concept of
running processes so is completely unable to inform sshd of the
configuration change.

 33

Example 6-2
● Run /etc/init.d/sshd reload
● Now try ssh -p 222 localhost
● Now try ssh localhost
● The file component only goes so far ...

