
The Complete Guide to

LCFG

Revision 0.99.63

06/01/05 14:10

The Complete Guide to LCFG Paul Anderson

(2) Revision 0.99.63: 06/01/05 14:10

Contents

1 Introduction 11

1.1 Background. 12

1.2 The Future. 13

1.3 The LCFG Guide. 14

1.3.1 How to use this Guide. 14

1.4 Notation and Terminology. 15

2 The LCFG Architecture 17

2.1 Software Updating and Installation. 18

2.2 The LCFG Software . 18

3 Getting Started - a Tutorial 21

3.1 Prerequisites. 22

3.2 Installing the LCFG RPMs. 22

3.3 Compiling a Profile. 23

3.4 Reading a Profile. 24

3.5 Running a Component. 25

3.6 Publishing a Profile. 27

3.7 Running a Client Component. 28

3.8 Running a Server Component. 31

3.9 Summary . 33

3.10 Where Next? . 33

4 Managing a Site with LCFG 35

5 Node Configuration 37

5.1 The Configuration Database. 37

5.1.1 Source Files. 37

The Complete Guide to LCFG (3)

The Complete Guide to LCFG Paul Anderson

5.1.2 Default Files . 38

5.1.3 Package Lists. 38

5.1.4 Header Files . 39

5.2 Configuration File Syntax. 39

5.2.1 Resources. 39

5.2.2 Resource Lists. 40

5.2.3 The C Preprocessor. 41

5.2.4 Mutation . 42

5.2.5 Contexts . 44

5.2.6 References. 47

5.2.7 Spanning Maps. 48

5.2.8 Package Lists. 49

5.2.9 Semantics. 50

5.3 Configuration Deployment. 51

5.3.1 Compiling the Profile. 51

5.3.2 Profile Transport. 52

6 Components 53

6.1 Component Methods. 53

6.2 Om .54

6.3 Method Options. 55

6.4 Some Common Components. 56

6.4.1 The Profile Component. 56

6.4.2 The Client Component. 57

6.4.3 The Boot Component. 57

6.4.4 The File Component. 57

6.4.5 The Inventory Component. 58

7 Software Updating 61

7.1 The Package List. 61

7.2 Updating RPMs. 63

7.3 The RPM Cache Component. 64

8 Node Installation 65

8.1 Creating the Installroot. 66

(4) Revision 0.99.63: 06/01/05 14:10

Contents Contents

8.2 Booting the Installroot . 66

8.3 Install Parameters. 66

8.4 Install-time Components. 67

9 Managing an LCFG Server 69

9.1 Configuring a Server. 69

9.2 Organising Source Files. 69

9.3 Server Plugins. 69

9.4 Authorization and Security. 70

9.4.1 Access Control Files. 70

9.4.2 Access Control. 70

9.4.3 Authorization. 71

9.4.4 Protecting Other Web Files. 71

9.4.5 Acknowledgements and Notifications. 72

9.5 The Status Display. 73

10 Writing Components 79

10.1 Choosing a Language. 80

10.2 Portability Issues. 80

10.3 The Component Framework. 81

10.3.1 Shell Bindings . 82

10.3.2 Perl Bindings. 83

10.3.3 The Template Processor. 84

10.3.4 Utility Functions . 87

10.3.5 Component Output. 88

10.3.6 Handling Logfiles . 89

10.3.7 Monitoring . 90

10.3.8 Option Processing. 91

10.3.9 Standard Variables. 92

10.3.10 Component Locking. 92

10.3.11 The Configure Method. 93

10.3.12 Managing External Daemons. 94

10.3.13 Writing Daemons in Perl. 96

10.4 Default Files. 97

10.4.1 Simple Resources. 97

The Complete Guide to LCFG (5)

The Complete Guide to LCFG Paul Anderson

10.4.2 Builtin Types. 97

10.4.3 String Validation. 98

10.4.4 Lists. 98

10.4.5 List Sorting. .100

10.4.6 Spanning Maps. .101

10.4.7 Common Resources. .103

10.4.8 Extending Existing Schema.103

10.4.9 Pseudo-Nodes. .104

10.5 Testing Components. .104

10.5.1 Test-time status files. .105

10.5.2 Test-time resource values. .105

10.5.3 Test-time configuration files.106

10.5.4 Test-time daemon execution.106

10.5.5 Test installation. .106

10.5.6 Summary. .106

10.6 Packaging Components. .107

10.6.1 Reconfiguring on Component Upgrade. 107

10.7 Installing and Using a Component. .108

11 Buildtools 109

11.1 Getting Started. .109

11.2 Substitution. .110

11.3 Creating New Releases. .111

11.4 Creating Distribution Tar Files. .111

11.5 Creating RPMS. .111

11.6 Creating Solaris Packages. .112

11.7 Rebuilding RPMs. .112

11.8 Miscellaneous Targets. .113

11.9 Branches .113

11.10Environment Variables. .113

12 LCFG on Solaris 115

12.1 Prerequisites. .115

12.2 Solaris-specific components. .116

12.3 Package Management. .116

(6) Revision 0.99.63: 06/01/05 14:10

Contents Contents

12.4 Booting .116

12.5 Installation .116

12.5.1 Jumpstart server configuration.116

12.5.2 Node installation. .117

A Macros 119

A.1 Mutate.h. .120

A.2 Validate.h .122

B List of Components 123

B.1 alias .124

B.2 amd .125

B.3 apache. .126

B.4 apm .128

B.5 arpwatch. .129

B.6 auth .130

B.7 authorize .132

B.8 bluez. .133

B.9 boot .136

B.10 client .139

B.11 cron .141

B.12 dhclient .143

B.13 dialup .144

B.14 divine .146

B.15 dns. .150

B.16 example. .155

B.17 file .156

B.18 foomatic. .159

B.19 fstab .161

B.20 gdm .163

B.21 grub .166

B.22 hardware .169

B.23 init .171

B.24 install .172

B.25 inv .173

The Complete Guide to LCFG (7)

The Complete Guide to LCFG Paul Anderson

B.26 inventory .175

B.27 ipfilter .177

B.28 iptables .178

B.29 irda .180

B.30 kerberos. .181

B.31 kernel .187

B.32 ldap .188

B.33 localhome. .194

B.34 logserver .195

B.35 lprng. .197

B.36 mailng. .199

B.37 network .201

B.38 nfs .203

B.39 ngeneric. .204

B.40 nscd .208

B.41 nsswitch. .210

B.42 ntp .211

B.43 pcmcia. .213

B.44 perlex .214

B.45 profile .215

B.46 ramdisk .218

B.47 rmirror .219

B.48 routing. .221

B.49 rpmaccel. .224

B.50 rpmcache .225

B.51 rsync. .227

B.52 server .228

B.53 snmp. .231

B.54 sshd .232

B.55 symlink .234

B.56 syslog .235

B.57 tcpwrappers. .238

B.58 toshset. .239

B.59 updaterpms. .240

(8) Revision 0.99.63: 06/01/05 14:10

Contents Contents

B.60 vigor .241

B.61 vlan .242

B.62 vmidi .243

B.63 xfree. .244

B.64 xinetd .249

C Utilities 253

C.1 lcfglock .254

C.2 lcfgmsg .255

C.3 mkxprof .257

C.4 qxprof .261

C.5 rdxprof .263

C.6 shiftpressed. .266

C.7 sxprof .267

D Solaris Jumpstart Scripts 269

D.1 The start script .269

D.2 The finish script. .270

E Standard Symbols 271

E.1 Symbols defined inos.mk .271

E.2 Symbols defined inlcfg.mk .272

E.3 Symbols defined insite.mk .273

F Perl Modules 275

F.1 LCFG::Component. .276

F.2 LCFG::Inventory .278

F.3 LCFG::Resources. .279

F.4 LCFG::Template .281

F.5 LCFG::Utils .284

G C Libraries 287

G.1 lcfgutils .288

H Code Examples 291

H.1 Example Shell Component. .292

The Complete Guide to LCFG (9)

The Complete Guide to LCFG Paul Anderson

H.1.1 Resource Defaults. .292

H.1.2 Example Component. .293

H.2 Example Perl Component. .294

H.2.1 Resource Defaults. .294

H.2.2 Perlex Component. .295

I Buildtools Examples 299

I.1 Sample config.mk for LCFG Component.299

I.2 Sample Makefile for LCFG Component.300

I.3 Sample Source for LCFG Component.301

I.4 Sample POD for LCFG Component.302

I.5 Sample specfile for LCFG Component.303

J Software Package Lists 305

J.1 Redhat 9 Packages. .305

(10) Revision 0.99.63: 06/01/05 14:10

Chapter 1

Introduction

This guide is an attempt to provide a single source for all the practical information nec-
essary to understand and use the LCFG configuration system. It superceeds several other
documents, including “Getting Started with LCFG” and “Writing LCFG Components”.
The published papers [AS02, AS00, And00, And94] still provide a good general overview,
although the older papers are somewhat dated and the detailed implementation descrip-
tions are no longer valid.

This guide includes a large quantity of documentation automatically extracted from the
software packages. This provides a useful single reference, but since LCFG is still evolv-
ing, it is important to check the version of the software package being used, and to refer
to the online documentation if this is more recent.

Software distributions and further details are available fromhttp://www.lcfg.org/.

Acknowledgements

Many people have contributed to the development of LCFG, by writing code, provid-
ing ideas and feedback, and suffering the consequences of a prototype implementation
on a production network. Paul Anderson created the original system and developed the
LCFG core. Alastair Scobie ported the system to Linux and developed many of the core
components, including the software update subsystem. Alistair Phipps performed the cur-
rent Solaris port, and many other people have contributed individual components1. Davy
Virdee tested the tutorial and provided valuable feedback on the documentation.

Paul Anderson <dcspaul@inf.ed.ac.uk>

1The reference documentation for each component lists the original authors.

The Complete Guide to LCFG (11)

http://www.lcfg.org/

The Complete Guide to LCFG Paul Anderson

1.1 Background

LCFG2 is a system for managing the configuration of large numbers of workstations or
other nodes. The configuration for an entire site is specified declaratively in a central
database. New nodes can be installed automatically according to their configuration in
the database, and running nodes will automatically be reconfigured if their configuration
deviates from the specification, either because the specification has changed, or because
of some local action on a node3.

The LCFG architecture was designed to meet a number of fundamental requirements, and
we believe that LCFG is still unique in explicitly addressing many of these issues:

❑ Declarative configuration specifications– the configuration specification defines
what the configuration should look like, not the procedural steps required to achieve
it.

❑ Devolved management– in any large site, many different people are responsible
for configuring differentaspectsof the installation. These people should be able to
specify their own requirements independently, and the tool should compose these
requirements into explicit configurations for the individual nodes.

❑ Variety – in the extreme case, no two nodes may share exactly the same config-
uration, although they will have many aspects in common. LCFG is capable of
managing all types of nodes on a site, from servers through to laptops. Simply
managing cluster nodes, or standard desktops, without also managing their serverss
is not considered acceptable.

❑ Change– in a large installation, configurations are in a constant state of flux. Both
the required specifications and the actual state of the nodes change constantly and
the tool must continually attempt to bring the whole site into line with the required
specification4.

❑ Complete automation– the configuration system must be capable of installing all
new nodes and maintaining their complete configuration automatically, otherwise
the efficiency benefits of automation are lost.

❑ Correctness– the configuration system should be able to configure systems com-
pletely from the declarative specifications with no manual intervention. This per-
mits logical reasoning about the configurations and a introduces high degree of
confidence in the correctness of the configurations.

❑ Modular Development– for a tool to maintain the ability to completely configure a
node, it is important that new applications or subsystems on the node can be quickly
incorporated into the configuration system. This means that it must be possible to
write new modules easily, quickly, and independently.

2Local ConFiGuration system.
3This is sometimes called aconvergentsystem in the configuration literature.
4This is sometimes referred to asasymptotic configuration.

(12) Revision 0.99.63: 06/01/05 14:10

Chapter 1. Introduction 1.2. The Future

❑ Disconnected operation– LCFG can be used on laptops and other remote nodes
which have intermittent network connectivity.

LCFG has a proven ability to manage large and diverse sites very effectively - we believe
that this demonstrates the validity of the basic principles. The current software release has
also been well-tested in a production environment. However, the following issues should
be noted by those considering the use of LCFG at other sites:

❑ LCFG is designed to manage large, complex installations. No tool can provide a
“canned” solution to such problems, and system managers need to understand the
configuration requirements of their site, understand the operation of LCFG itself,
and provide the site-specific “content” to populate the LCFG framework. The ad-
vantages for large and/or complex sites are considerable, but an initial investment
of effort is required and the learning curve can be steep.

❑ The current implementation carries a considerable amount of history, and has often
evolved from prototype code. Commands and statements are sometimes not as clear
as they could be, and much of the code is in need of refactoring to support further
developments.

❑ LCFG was originally developed under Solaris, but the version described in this
guide is currently maintained under Redhat 9. Various components have been
ported to a number of other operating systems (Max OsX, Debian, back to So-
laris), and these variants are mentioned in the guide where appropriate. However,
a configuration system has many small dependencies on the underlying operating
system, and these other ports are not so well supported.

1.2 The Future

We now expect the current LCFG implementation to remain as a relatively stable pro-
duction tool. LCFG has provided a considerable amount of experience in the theory and
practice of large-scale system configuration, which has fed an active research programme,
and we hope that this will eventually lead to a new generation of configuration tools. This
is likely to involve:

❑ A much clearer special-purpose language.

❑ Explicit support for composition of independent aspects.

❑ Some support for configurations specifications involving looser constraints, rather
than explicit values.

❑ A more distributed mechanism for compiling and deploying configurations.

❑ Integral support for an equivalent of thecontextmechanism.

❑ An architecture with better support for autonomic fault recovery.

The Complete Guide to LCFG (13)

The Complete Guide to LCFG Paul Anderson

Thelssconfweb site provides some pointers to projects, and a mailing list for discussions
of these issues:

\href{http://homepages.inf.ed.ac.uk/group/lssconf}{http://homepages.inf.ed.ac.uk/group/lssconf}.}

1.3 The LCFG Guide

❑ Chapter2 describes the overall LCFG architecture.

❑ Chapter3 is a tutorial which introduces the basic installation and use of the LCFG
software.

❑ Chapter4 describes the process of deploying LCFG to completely manage an entire
site.

❑ Chapter5 describes how to create and deploy node configuration descriptions.

❑ Chapter6 describes the operation of the components that actually implement these
descriptions.

❑ Chapters7, and8 describe the software updating and node installation processes.

❑ Chapter9 covers the management of an LCFG server.

❑ Chapters10 and11 provide information for writing new LCFG components. The
appendices include copies of many relevant manual pages and full code for some
example components.

❑ Chapter12covers the differences in the Solaris port of LCFG.

1.3.1 How to use this Guide

Chapter2 is a short overview, suitable for all readers. Working through the tutorial of
chapter3 will provide a better understanding of the LCFG principles, and is recommended
for those with no previous experience.

Chapters5, 6, 7 and8 are important references for those wishing to configure nodes at a
site with an existing LCFG installation.

Chapters4 and9 are important for those considering the deployment of LCFG at a new
site, or those responsible for managing an LCFG server.

Chapters10 and11 are for those who need to write their own components for the LCFG
framework.

(14) Revision 0.99.63: 06/01/05 14:10

Chapter 1. Introduction 1.4. Notation and Terminology

1.4 Notation and Terminology

The following symbols are used in this document:

Information specific to the DICE5installation of LCFG.

A warning – a common source of errors or other unexpected behaviour.

✏ Advanced or subsidiary information.

Fixed width text is used to indicate literal code or the names of programs and files.

Italic text is used when defining a new term. Italic text in code is used to indicate a value
supplied by the user, rather than a literal value.

5Distributed Informatics Computing Environment.http://www.dice.inf.ed.ac.uk/.

The Complete Guide to LCFG (15)

http://www.dice.inf.ed.ac.uk/

The Complete Guide to LCFG Paul Anderson

(16) Revision 0.99.63: 06/01/05 14:10

Chapter 2

The LCFG Architecture

The diagram in figure2.1shows the overall architecture of the LCFG system:

❑ A declarative description of the configuration of each node is created in a text file.

❑ A node description normally contains a small number of node-specific parameters
(resources), together with pointers to other files describing variousaspects, such as
“web server”, or “student machine”, or “dell gx260”. The aspect files are created
and managed independently by the person responsible for the aspect.

❑ The LCFG compiler (mkxprof) compiles these source files into a single XMLpro-
file for each machine. The profile contains the expanded set of resources, including
the values from all the included aspects. Note that many aspects will overlap and
the compiler needs to prioritise and merge (compose) values for resources which
are specified in multiple aspects.

❑ A standard web server, such as Apache publishes the XML profiles.

❑ When a profile changes, the server sends a simple notification to the client node
which fetches the new profile from the web server using HTTP (possibly over SSL).
Clients normally poll for new profiles periodically in case they miss the initial noti-
fication.

❑ A number ofcomponents1. on the client are responsible for taking the declarative
resource values from the profile and implementing the specified configuration on
the system. This usually involves creating application-specific configuration files
from the profile data and possibly manipulating local daemons directly. The com-
ponents are completely independent and different nodes will run different sets of
components.

❑ Very simple status information from the components is send back to the LCFG
server which maintains a basic monitoring facility.

1In earlier versions of LCFG,componentswere known asobjects.

The Complete Guide to LCFG (17)

The Complete Guide to LCFG Paul Anderson

���

�����

�����	

�������
���

��� ������

	�����������

��������

�����������

���������

������������
����������������������

���
������

 �����������

��!" �	"#$"#

Figure 2.1: LCFG Architecture

2.1 Software Updating and Installation

One component on a node (updaterpms) is reponsible for adding and removing soft-
ware packages on the node to synchronize it with the list of packages and versions given in
the configuration specification. In principle, this component could be replaced to manage
the software on the node in some other way.

Installation of a new node is treated simply as a special case of the normal maintenance
process; a new node is booted from a temporary root filesystem and the normal com-
ponents (including the software update) are used to synchronize the (empty) disk with
the packages and configuration specified in the node description. A small number of
components perform specific operations that are only useful at install time, such as disk
partitioning.

Notice that the complete site can theoretically be reconstructed from just the repository of
packages and the set of LCFG source files.

2.2 The LCFG Software

The LCFG software distribution consists of the following:

❑ The LCFG compilermkxprof 2 and the component that manages it.

2“MakeXml Profile”

(18) Revision 0.99.63: 06/01/05 14:10

Chapter 2. The LCFG Architecture 2.2. The LCFG Software

❑ The LCFG clientrdxprof 3 and the component that manages it.

❑ A set of libraries and utilities used by the components. These provide a simple
framework and an API for creating components in Shell script or Perl.

❑ A set ofcore components. LCFG is very modular, and none of the components are
completely essential. However, a small number of components are considered as
core components because they (or some alternative components implementing the
equivalent functionality) are necessary for a useful LCFG installation.

❑ Optional components. A large number of optional components are available. Some
of these can be considered almost as core components, while others will have been
written especially for a highly-specific application or environment, and may not be
useful outside of their original context.

AppendixJ lists the software packages available on thelcfg.org web site, which are
grouped in convenient “bundles”.

3“Read XML Profile”

The Complete Guide to LCFG (19)

The Complete Guide to LCFG Paul Anderson

(20) Revision 0.99.63: 06/01/05 14:10

Chapter 3

Getting Started - a Tutorial

In a production LCFG installation, LCFG itself will install new nodes complete with
the necessary LCFG software to maintain their configuration, and it is not essential to
understand the details described in this section in order to use the configuration system.

However, this chapter is intended as a step-by-step tutorial to introduce the basic princi-
ples of LCFG; it starts by assuming the existence of a node with a pre-installed operating
system (but no LCFG), and works throught the following stages. It may be useful to refer
to the architecture diagram in figure2.1 to understand how these steps form part of the
overall system.

❑ Creating a simple node description and compiling this into a profile using the LCFG
compilermkxprof . (3.3)

❑ Usingrdxprof (the LCFG client) to read and parse this profile. (3.4)

❑ Running and configuring a single component from the profile. (3.5)

❑ Publishing the profile using a web server so that a client can fetch the profile from
a remote server. (3.6)

❑ Runningrdxprof as a daemon (using theclient component) so that it will au-
tomaticaly fetch a new profile and reconfigure components when the configuration
changes. (3.7)

❑ Runningmkxprof as a daemon (using theserver component) so that it will
automatically recompile source files when they change. (3.8)

Note that the above process is complicated by some bootstrapping issues that are normally
avoided when nodes are installed using the LCFG installation process (see chapter8).

The Complete Guide to LCFG (21)

The Complete Guide to LCFG Paul Anderson

3.1 Prerequisites

This tutorial assumes the availability of at least one node with a copy of Redhat 9 pre-
installed1. It may be useful to have at least two nodes so that separate machines may be
used for the client and the server, although this is not essential and a single node can used
for both.

The server node must also support a web server. Basic LCFG operation only involves pub-
lishing static XML documents, so any web server should be suitable. However, Apache
is the preferred choice and LCFG includes some support for Apache in a production en-
vironment; for example, generation of Apache access control files.

A basic knowledge of Apache (or some other web server) configuration is assumed
for this tutorial - the details are not explained here, and it is necessary to understand how
to configure the chosen web server to publish documents at a given URL.

3.2 Installing the LCFG RPMs

The LCFG core packages (and their pre-requisites) must be installed. The schema pack-
ages containing the default files must also be installed on the server. These are all listed
in appendixJ, and can be downloaded fromhttp://www.lcfg.org .

It is usually easiest to simply install all three of these bundles. For example, to retrieve
and install the RPMs for rh9:

➜ mkdir download

➜ cd download

➜ export URL=http://www.lcfg.org/download/rh9/release

➜ wget $URL/latest/lcfg-core.urls
...

➜ wget -i lcfg-core.urls
...

➜ wget $URL/latest/lcfg-core-prereq.urls
...

➜ wget -i lcfg-core-prereq.urls
...

➜ wget $URL/latest/lcfg-core-defaults.urls
...

➜ wget -i lcfg-core-defaults.urls
...

➜ rpm -i *.rpm
...

Note that some of these (prerequisite) packages may already be installed, or additional

1It should be possible to use some other supported operating system, such as Solaris, but this is not
recommended, as the there will be a number of small differences which are likely to be confusing.

(22) Revision 0.99.63: 06/01/05 14:10

Chapter 3. Getting Started - a Tutorial 3.3. Compiling a Profile

prerequisite packages may be required. This may generate dependency errors during the
installation which must be resolved by deleting or installing the appropriate RPMs.

This installs LCFG components in/usr/lib/lcfg/components as well as various
utilities and libraries. Installation of the servers and client can be verified by checking the
usage:

➜ mkxprof -V
++ warning: no persistent state ...
++ (use -c option ...
usage: mkxprof [opts] [file ...]
...

➜ rdxprof -V
usage: rdxprof [opts] [host]
...

3.3 Compiling a Profile

The LCFG compilermkxprof takes asource filedescribing a node configuration and
compiles it into an XMLprofile. Normally, the profile will include manyresourcesfor
many differentcomponents, and the source file will specify these, either explicitly, or by
including header files describing variousaspects. This example uses a very simple source
file which includes only one component; the Perl exampleperlex (seeB.44).

profile.components profile perlex
profile.version_profile 3
profile.version_perlex 1

perlex.server foo.bar.com

The profile resources specify the components to be included (the profile itself and the
perlex component), and the schema versions to be used for these components. The
perlex resource specifies configuration parameters for theperlex component (these
are documented fully in the manual page – see appendixB.44).

This source file should be created using a text editor, in the current directory. By default,
the name of the file should normally be the same as the (short) hostname of the client
node for which the profile is being generated. The following examples assume that a
single node is being used for both the LCFG client and server, and the short name of
this node should be used; we will refer to this asclient. The filename must not have an
extension.

The source file can now be compiled into a profile using the command:

mkxprof -S ‘pwd‘ -w ‘pwd‘/WEB -c ‘pwd‘/TMP client

The Complete Guide to LCFG (23)

The Complete Guide to LCFG Paul Anderson

The compilermkxprof uses default locations for the source files, the profile output, and
the temporary files. Since the default locations are root-owned, the above options are
necessary to specify different directories when the compiler is not running as root. The
directories will be created if they do not already exist. The options are described fully in
themkxprof manual page (appendixC.3).

The resulting profile should be generated under theWEBdirectory. The full pathname
depends on both the domain name, and the host name of the client. For example:

➜ cat WEB/profiles/ domain/ client/XML/profile.xml
<?xml version="1.0"?>
<profile

...
<components>

<perlex>
...
<server>foo.bar.com</server>
...

</perlex>
...

</components>
...

</profile>

Note that the profile contains separate sections for the two components, and that (among
other things), theperlex section contains the value specified for theserver resource.

If there are any errors in the compilation process, the profile will not be generated. Apart
from mistakes in the source file, the most likely cause of errors is missing packages; the
error message “missing default file” usually indicates that one of the packages containing
the schema files has not been installed.

3.4 Reading a Profile

Normally, a client node would fetch the XML profile from the server using HTTP (this is
described later). However, to demonstrate the operation of the LCFG client (rdxprof), it
can be run on the same node as the server, and read the profile directly from the filesystem.
This operation needs to be performed as root, sincerdxprof uses a fixed location2 for
the DBM file which will contain the parsed resources:

rdxprof -x WEB/profiles/ domain/ client/XML

The resources should now be available to the LCFG components, and these can be in-
spected usingqxprof :

2/var/lcfg/conf/profile/dbm

(24) Revision 0.99.63: 06/01/05 14:10

Chapter 3. Getting Started - a Tutorial 3.5. Running a Component

➜ qxprof perlex
ng_statusdisplay=yes
server=foo.bar.com
ng_schema=1
ng_cfdepend=<perlex
schema=1
ng_reconfig=configure

This will display all the (non-null) resource values for theperlex component3. See the
qxprof manual page (appendixC.4) for more details.

3.5 Running a Component

Once the LCFG client has parsed the resource values from the profile, these values are
available for use by the LCFG components. Theperlex component is a simple ex-
ample component which creates a configuration file, using parameters from the profile,
and runs a daemon; the daemon simply prints a message to the log file every ten sec-
onds. In a production environment, most components would be started and stopped (by
theboot component) at system startup and shutdown, but theomprogram can be used
to do this manually.omwould normally be configured with authorization parameters to
allow specified users to perform various operations, but for now it is necessary to run the
omcommands as root:

➜ om perlex start
[OK] perlex: start

The configuration file for the Perlex component should contain the specifiedserver
parameter:

➜ cat /var/lcfg/conf/perlex/config
...
server = foo.bar.com
...

The log file for the Perlex component should show the daemon starting with this parame-
ter:

➜ cat /var/lcfg/log/perlex
19/11/03 10:46:37: >> start
19/11/03 10:46:37: configuration changed
19/11/03 10:46:37: daemon started: version 1.1.3 -
19/11/03 10:46:37: Hello World: server=foo.bar.com
...

3Note that the order of the displayed resources is insignificant and may vary. The actual resources
themselves may even be different for different versions of LCFG, but this is not important for the purposes
of this tutorial.

The Complete Guide to LCFG (25)

The Complete Guide to LCFG Paul Anderson

The daemon is running and will append an entry to the logfile every ten seconds. Useom
to stop the daemon:

➜ om perlex stop
[OK] perlex: stop

➜ tail /var/lcfg/log/perlex
...
19/11/03 10:59:17: Hello World: server=foo.bar.com
19/11/03 10:59:23: >> stop
19/11/03 10:59:23: daemon stopped:

In a production environment, running components will be automatically reconfigured
whenever the source files are changed. Later sections describe how to enable this. For
now, the these steps can be executed manually:

❑ Make sure theperlex component is running (om perlex start).

❑ Edit the source file to change the value of theserver resource.

❑ Recompile the profile usingmkxprof (3.3).

mkxprof -S ‘pwd‘ -w ‘pwd‘/WEB -c ‘pwd‘/TMP client

❑ Re-run the client to process the new profile, specifying the-n option. (3.4). This
will cause the client to automatically reconfigure any components whose resouces
have changed.

rdxprof -n -x WEB/profiles/ domain/ client/XML

The logfile should show the component being reconfigured to the new values (.org re-
places.com):

➜ om perlex stop
[OK] perlex: stop

➜ tail /var/lcfg/log/perlex
...
19/11/03 11:09:39: >> configure
19/11/03 11:09:39: configuration changed
19/11/03 11:09:39: daemon reconfigured:
19/11/03 11:09:39: Hello World: server=foo.bar.org

(26) Revision 0.99.63: 06/01/05 14:10

Chapter 3. Getting Started - a Tutorial 3.6. Publishing a Profile

3.6 Publishing a Profile

In all the above examples, the server and client have been running on the same node and
passing the profile via the filesystem. In a production environment, the client will fetch
the profile from the server using HTTP.mkxprof contains code to fetch the profile, but
the server relies on an independent web server to publish it.

The web server should be configured to publish the directory specified in the-w option
of the compile command. The following examples assume that:

❑ The compilermkxprof is run without a-w option, so that the web directory will
default to/var/lcfg/conf/server/web :

mkxprof -S ‘pwd‘ -c ‘pwd‘/TMP client

Note that this probably needs to be run as root to permit writing to the web directory.

❑ The contents of this directory are published as the root of a virtual web server,
typically http://lcfg. domain.

A knowledge of Apache configuration is necessary to enable this, but the Apache config-
uration would probably include:

DocumentRoot /var/lcfg/conf/server/web
ServerName lcfg.inf.ed.ac.uk

Starting the web server and runningmkxprof to regenerate the profile should now make
it available via http at some URL such as:

http://lcfg. domain/profiles/ domain/ client/XML/profile.xml

This can be verified using an ordinary browser.

The client can now be instructed to fetch the profile from the server, rather than using the
filesystem:

➜ rdxprof -u http://lcfg. domain/profiles

Note that the-u option is used to specify the root of the hierarchy containing the profiles.
The XML profile will be downloaded into the default location, where it can be inspected:

/var/lcfg/conf/profile/xml/ client.xml

The Complete Guide to LCFG (27)

The Complete Guide to LCFG Paul Anderson

qxprof can be used to query the parameters.

It is now possible to create profiles on the server for a number of client nodes.rdxprof
can be run on each client to fetch its own profile and configure its own components. The
source files on the server can make use of C preprocessorheaderfiles to share common
configuration parameters. Header files must have an extension of.h .

✏ When header files are being used, it is normally helpful to compile profiles using
the -d option tomkxprof . This adds additional information to the profile showing the
location(s) in the source file(s) corresponding to each resource. The-v option toqxprof
can then be used to locate the definitions. The following example shows where the default
value for the resourceprofile.format is defined:

➜ qxprof -v profile.format
profile.format:

value=XML
type=default

derive= ... /profile-3.def:22
authors=default
context=default

Note that these values may differ slightly depending on the version of LCFG being used.

Separate client and server nodes may now be used for the following examples, although a
single node may still be used if this is more convenient.

3.7 Running a Client Component

When a change is made to the source files, it is necessary to rerunmkxprof (on the
server) to generate new profiles, and to rerunrdxprof (on each node), to fetch and
process the new profile. This section describes how to automate the fetching of new
profiles, and the next section describes how to automate the compilation.

rdxprof is capable of running as a daemon. In this mode it will listen to UDP no-
tifications from the server, and fetch a new profile whenever it receives a notification.
In addition, it can poll the server for changes at regular intervals, in case a notification
has been missed. It is possible to simply startrdxprof manually with the appropri-
ate command-line options, but LCFG provides a component (theclient component)
to managerdxprof) which allows rdxprof itself to be configured from the client
source file, and managed withom. To configure the client component, add the appropriate
resources to the source file for the client:

(28) Revision 0.99.63: 06/01/05 14:10

Chapter 3. Getting Started - a Tutorial 3.7. Running a Client Component

profile.components profile perlex client
profile.version_profile 3
profile.version_perlex 1
profile.version_client 2

perlex.server foo.bar.com

client.url http:// server. domain/profiles
client.notify yes

This adds the client component to the profile list, specifies the URL for fetching new
profiles, and automatically reconfigures components when their resource change. The
serveris the name of the LCFG server, which may be the same as the client if only one
machine is being used.

We now need to start theclient component, so that it will runrdxprof to fetch the
new profile. However, there is a bootstrapping issue here, because, we need the new
profile to specify the resources, before we can start the client component! In a production
environment, the node installation process will install the initial profile on the node. For
now, we can do this manually, either usingrdxprof as before, or by using the special
installation method of theclient component (which simply callsrdxprof with
the appropriate parameters):

➜ om client install
http:// server. domain/profiles

The client log should show the receipt of the new profile, and qxprof should display the
client resources:

➜ tail /var/lcfg/log/client
...
19/11/03 10:13:19: >> install

new profile: http://lcfg ...
last modified Tue Nov 18 12:20:40 2003

➜ qxprof client.url
url=https:// server. domain/profiles

Once this is successful, theclient component can be started:

The Complete Guide to LCFG (29)

The Complete Guide to LCFG Paul Anderson

➜ om client start
[OK] client: start

➜ tail /var/lcfg/log/client
...
19/11/03 12:12:35: >> start
19/11/03 12:12:46: starting daemon [7647/732] ...
19/11/03 12:12:46: warnings: ...
19/11/03 12:12:46: context check requested

➜ ps ax |grep rdxprof
...

From now on, the client will run automatically; when a profile change notification is
received, the new profile will be downloaded and any changed components will be recon-
figured. Even theclient component itself can be reconfigured automatically. To enable
the notifications and polling, two additional resources need to be added to the source file:

profile.notify true
client.poll 10m

The profile.notify resource tellsmkxprof to send a change notification to the
client whenever the profile changes. Theclient.poll resource tells theclient to
poll for profile changes every 10 minutes (in case the notification is missed).

If mkxprof is rerun, then the notification should be sent to the client which will then
fetch the new profile and reconfigure the client component. The client component will
actually restartrdxprof in this case because the change to thepoll resource involves
changing the command-line parameters forrdxprof :

➜ tail /var/lcfg/log/client
...
02/12/03 09:22:32: new profile: http:// server ...
02/12/03 09:22:32: last modified ...
02/12/03 09:22:38: reconfiguring component ...
02/12/03 09:22:38: >> configure
02/12/03 09:22:39: configuration changed
02/12/03 09:22:39: configuration changed: restarting
02/12/03 09:22:39: >> restart
02/12/03 09:22:39: [OK] client: configure
02/12/03 09:22:40: termination requested
02/12/03 09:22:40: stopping server
02/12/03 09:22:42: starting daemon [19298/732] ...
02/12/03 09:22:42: warnings: ...
02/12/03 09:22:42: context check requested
[OK] client: restart

(30) Revision 0.99.63: 06/01/05 14:10

Chapter 3. Getting Started - a Tutorial 3.8. Running a Server Component

The client component can be automatically started at boot time by creating aninit
script, or placing a command inrc.local . However, in a production system, this is
normally performed using the theboot component (see section6.4.3).

3.8 Running a Server Component

In a typical production enviroment, there will be many hundreds of source files, including
both files for individual nodes, and header files which are referenced by other source files.
When any of these files are changed, it is necessary to runmkxprof on all the affected
source files to regenerate the profiles.

As with rdxprof , mkxprof can run as a daemon and poll for changes to the source
files. It maintains a database of dependencies, so that when a header file is changed, it can
automatically recompile the source files for all the affected nodes. As with theclient
component, LCFG provides aserver component to managemkxprof .

To run theserver component, the source file (for the server node) should include the
following resources4:

profile.components ... server
profile.version_server 2
...
server.poll 10s

This tellsmkxprof to poll for changes in the source files every 10 seconds. It is pos-
sible to set additional resources specifying the locations of the various source files (see
appendixB.52), however the default values are normally suitable when running as root;
mkxprof -V shows the defaults:

➜ mkxprof -V
...
sources: /var/lcfg/conf/server/source
headers: /var/lcfg/conf/server/include, ...
defaults: /usr/lib/lcfg/defaults/server
packages: /var/lcfg/conf/server/packages
validation: /var/lcfg/conf/server/validation
...

Source files should be placed in thesources directory, and header files in the (first
listed)headers directory.

We now need to bootstrap the server startup in the same way as the client:

4If separate nodes are being used for the client and the server, the “server” must also be an LCFG
“client”, so that it can run theserver component.

The Complete Guide to LCFG (31)

The Complete Guide to LCFG Paul Anderson

❑ Make sure that the source files for all nodes5, and any header files, are in the the
correct directories.

❑ Make sure that theclient component is running on all nodes; particularly on the
node that is being used as the LCFG server.

❑ Runmkxprof with the default pathnames (no-S option, etc.) for each node.

❑ Check that the profiles have been generated in the correct directory6 and are being
published by the web server.

❑ Check that theclient component on all the nodes has downloaded the new pro-
file.

The server component can now be started. (As with theclient component, this
would normally be started by theboot component at system startup):

➜ om server start
[OK] server: start

➜ cat /var/lcfg/log/server
24/11/03 12:01:08: >> start
24/11/03 12:01:09: starting daemon [24221/733] ...
24/11/03 12:01:09: - warnings: ...
24/11/03 12:01:09: - fetches: ...
...

mkxprof is now monitoring the source files for changes. To test this, edit one of the
source files and change some resource (for example,perlex.server). Within 10
seconds (the time specified by thepoll resource, the server log should show the new
profile being generated:

➜ tail /var/lcfg/log/server
...
24/11/03 12:01:09: processing: client [1/1, pass 1]
24/11/03 12:01:14: 0 error(s), 0 warning(s) (XML ...
...

The client will be notified of the change, and theclient component will download the
new profile and reconfigure the component(s) whose resources have changed.

The error messages from the compilations are recorded in the log file. This is not normally
very convenient, andmkxprof can display this information on a web page, together with
other component status information. See section9.5for details.

5There may be only one node if the same machine is being used as the LCFG server and client.
6/var/lcfg/conf/server/web

(32) Revision 0.99.63: 06/01/05 14:10

Chapter 3. Getting Started - a Tutorial 3.9. Summary

3.9 Summary

The above steps should have created a small cluster of one LCFG server, and one client
(possibly the same machine!) which will automatically maintain its configuration in line
with the specification in the source files:

❑ The configuration of all the nodes is specified in the source files, with common
parameters contained in header files.

❑ The server node is running the LCFGserver component which uses the LCFG
compilermkxprof to recompile the source files for all affected nodes, whenever a
source file (or header) is changed.

❑ The compiler generates a profile for each node which is published by the web server.

❑ The client node(s) (the server is also an LCFG client) are running the LCFGclient
component which usesrdxprof to download a new profile and reconfigure all af-
fected components whenever the profile changes.

❑ The client node is running a simple example component which configures and man-
ages a daemon according to the specification in the source file.

❑ The client andserver components themselves are also configured and man-
aged according to the specification in the source files.

Note that this process appears complex, since many operations have been performed man-
ually that would happen automatically in a normal environment that was fully managed
by LCFG.

3.10 Where Next?

The following list shows some of the areas that require consideration when developing
the tutorial cluster into a production configuration environment:

❑ Components need to be started and stopped automatically. This is handled by the
boot component, and is platform-specific. See section6.4.3.

❑ Components need to be added to manage other services. See appendixB for a list
of those available. Components can be written to manage services for which there
is no existing component. This described in chapter10.

❑ The software packages installed on a node can be managed by LCFG using a com-
ponent such asupdaterpms . This is described in chapter7.

❑ LCFG can perform initial installation of nodes according to the specification in the
source file. This is described in chapter8.

The Complete Guide to LCFG (33)

The Complete Guide to LCFG Paul Anderson

❑ Some thought needs to be given to the organisation of the source and header files.
General guidance on this, as well as other useful information about managing a new
site with LCFG is given in chapter4.

(34) Revision 0.99.63: 06/01/05 14:10

Chapter 4

Managing a Site with LCFG

Implementing a new LCFG installation involves:

☞ ** TODO **

The Complete Guide to LCFG (35)

The Complete Guide to LCFG Paul Anderson

(36) Revision 0.99.63: 06/01/05 14:10

Chapter 5

Node Configuration

This section describes how to create and deploy node configuration descriptions for LCFG.

5.1 The Configuration Database

The LCFG “database” is a collection of flat files which specify all the configuration infor-
mation for a complete site. Node configurations are defined by creating and editing these
files. It is possible to simply edit the configuration files with a normal text editor, and this
is the simplest procedure during experimentation. In a live site however, there is usually
a need for revision control, atomicity, remote access, and locking. Different sites may
manage these issues in different ways, for example, by using CVS orrfe . The physical
location of the files also site-dependent.

There are four different types of configuration file:

5.1.1 Source Files

Source Files hold configuration information for nodes. Every node must have a corre-
sponding source file which represents the complete configuration of that node. Source
files usually consist of a mixture of references toheaderfiles containing shared config-
uration values, and explicit configuration parameters which are unique to the particular
node. For example:

#include <lcfg/os/redhat71.h>
#include <lcfg/hwbase/dell_optiplex_gx240.h>
#include <inf/sitedefs.h>

dhclient.mac 00:06:5B:BF:87:2E

Not all source files correspond to physical nodes. Some other entities also have source
files, such as printers, and the inventory which collates inventory information from all the
node files and presents it as a single file.

The Complete Guide to LCFG (37)

The Complete Guide to LCFG Paul Anderson

DICE usesrfe for managing LCFG configuration files. The manual page
for rfe explains the options in detail, but the following usage is most common:

❑ To edit the configuration for the nodefoo :

➜ rfe lcfg/foo

❑ To create a new configuration for the nodebar :

➜ rfe -n lcfg/bar

rfe handles remote editing, authentication, locking and revision control. There is
no real support for transactions, but more than one file specification can be given on
the command line and the changes will be commited with only a small time interval
between them.

Source file names should not have any extension.

5.1.2 Default Files

Default files have names with the extension.def and are often calleddotdeffiles. There
is (at least) one default file for each LCFG component, and this holds the default values
and type information for the configuration parameters used by that component. These are
used to typecheck and provide default values for the resources which are specfied in the
source files. There may be several versions of a default file for each component to allow
the server to support clients which are running different versions of the component. In
this case, theschema version1 is part of the default file name.

Normally, the default files are created by the authors of the corresponding components,
and installed on the server from an RPM2; They should not normally be edited. However,
it is possible to create local variants of a default file by creating and using a copy with a
local schema version, for example, to add site-specific validation to a particular resource.

5.1.3 Package Lists

Package lists have an extension of.rpms and are known asrpmcfgfiles3. These files
contain lists of packages which can be referenced from the node source files to specify
the software to be installed on each node (see5.2.8). These tend to be used for groups of
related software packages, and a source file will usually declare a mixture of rpmcfg files
and additional, individual packages to be installed on the particular node.

1The schema version does not correspond to the version of the component code, since it only need to
change when the format of the resources is changed in an incompatible way

2RPMS containing default files have names of the formname-defaults-s schema.
3Normally, the packages are Redhat RPMs, but this is not essential.

(38) Revision 0.99.63: 06/01/05 14:10

Chapter 5. Node Configuration 5.2. Configuration File Syntax

When a new source file is created usingrfe , a template is automatically
provided showing the available header files. Simple node configurations can nor-
mally be created just by uncommenting the required headers, and deleting the others.
One day, there may be a GUI interface to make this process even easier.

The package lists can contain either explicit version numbers or wildcards which refer to
the latest version in the repository.

5.1.4 Header Files

Header files have an extension of.h and include common sets of configuration parameters
which can be included by more than one node source file. This is the primary method of
structuring configuration information to allow devolved management of different aspects
of the site configuration. Hence it is important that attention is paid to the organization of
the header files.

For example, some header files might define parameters corresponding to different OS or
hardware configurations, and these files would then be site-independent, and managed by
whoever is responsible for the corresponding platform. Other header files might contain
information about site policy, and would therefore be site-specific, and managed by a local
site manager. See5.1.1.

5.2 Configuration File Syntax

The syntax of the LCFG source files has evolved considerably since the original imple-
mentation. It is well recognised that the current syntax is not at all clear, and badly in need
of replacement. However, the basic elements are simple, and the facilities are adequate.
New configuration languages are currently an active research area (see section1.2and we
hope to eventually replace the present language with something much cleaner.

5.2.1 Resources

All configuration parameters in LCFG are represented by simple key/value pairs known
asresources. The key consists of acomponentname and anattributename separated by a
dot. The value is an arbitrary string which is separated from the key by white space. For
example:

mailng.relay postbox@dcs.ed.ac.uk
kdm.greetstring Division of Informatics

The documentation for the individual components describes the supported attributes. The
component may specify constraints on the acceptable values for a resource and these are

The Complete Guide to LCFG (39)

The Complete Guide to LCFG Paul Anderson

validated by the compiler. Some common constraints are often referred to astypes(for
example,integer) although these are simply syntactic constraints on the acceptable
values, rather than a formal type system.

Components are intended to be modular and they do not normally access attributes of
other components, although the source file may specify the value of a resource by refer-
ence to some other resource (see5.2.6).

Once a resource value is assigned (either in a source file, or any included header file), it
is an error to reassign a value to the same resource. Previously assigned values can only
be changed using amutation(see5.2.4). If no value is supplied for a resource, then the
default value from the component’s default file is used.

The profile component is a special case. There is noprofile component on the
client node, but these resources are interpreted as directives to the LCFG compiler. In
particluar, the resourceprofile.components declares the components which are to
appear in the generated profile. Resources for any components not appearing in this list
will be silently ignored. The absolute minimal sourcefile necessary to generate a profile
is therefore:

profile.components profile
profile.version profile 2

(Of course, more components must be declared to specify a useful configuration). The
version resource is necessary to specify the schema version of theprofile component.
This will change if a newprofile component is released which has incompatible re-
sources.

5.2.2 Resource Lists

It is often necessary for a resource value to specify a list of items, each of which has
a number of associated attributes. Historically, a simple convention known astag lists
evolved to represent such lists. This convention has become formalized in recent versions
of LCFG, although we would almost certainly have chosen a better syntax if developing
a new language from scratch! Tag lists are best illustrated by an example, such as this
description from thekdm component:

menu
A list of tags for menus to appear on the menubar.

mitem tag
The label for the menu item with the specified tag.

Typical corresponding resource declarations might be:

kdm.menu file quit saveas
kdm.mitem_file File
kdm.mitem_quit Quit
kdm.mitem_saveas Save As

(40) Revision 0.99.63: 06/01/05 14:10

Chapter 5. Node Configuration 5.2. Configuration File Syntax

The tags should be unique alphanumeric identifiers4. In some cases, the tag names them-
selves are used by the component; in many cases, they are simply arbitrary identifiers to
indicate the resource keys holding the attributes for the list items.

Several components make use of multi-level tag lists. For example:

fstab.disks hda hdb
fstab.partitions_hda root swap usr
fstab.size_root 100
fstab.size_swap 200
fstab.size_use free
fstab.partitions_hdb home
fstab.size_home free

5.2.3 The C Preprocessor

The LCFG compiler passes the source files through the C preprocessor (seeman cpp).
This allows the familiar syntax to be used for included files, conditionals, macro defini-
tions, and comments. For example, a header filelocal.h :

#include <dell.h>
#define ORGANIZATION ACME Configuration Co
/* Enable this for client debugging */
#undef DEBUG

Might be used in a source file as follows5:

#include <local.h>
kdm.greetstring ORGANIZATION host: HOSTNAME
#ifdef DEBUG
client.debug all
#endif

Unfortunately, the C preprocessor is designed to process C source code which does not
have the same syntax as LCFG source files. This can lead to problems in some cases
where some character strings are mistakenly interpreted by the preprocessor: comment
characters and string quoting are often sources of trouble. The compiler mutation features
described in section5.2.4provide some help with quoting awkward cases, but use of the
C preprocessor is another design choice that we would make differently next time.

Unlike C, line breaks are significant in LCFG source files, and it is often useful to be
able to create macros which generate multiple source lines. The special character “¢” is
translated into a newline by the compiler, so that multi-line macros can be created as in
the following example:

4It is possible for tags names to include underscore characters although this can be ambiguous and is
deprecated.

5Note that the symbolHOSTNAMEis predefined by the compiler to the name of the current file.

The Complete Guide to LCFG (41)

The Complete Guide to LCFG Paul Anderson

#define BIGDISK \\
fstab.size_root 6000 ¢\\
fstab.size_swap 2000

The key sequence Alt-Gr/C can be used to produce the “¢” symbol in the source file.

5.2.4 Mutation

Typically, individual source files (or other header files) may want to override the values
provided in one of the included header files. For example, a header file may define the
default disk partitions for all machines of a particular hardware type, but some individual
nodes may need to define a different partitioning. If the source file simply declares a new
value for the resource, the compiler will signal an error because the same resource has
been declared more than once.Mutation is the name used to describe to the mechanism
which the compiler provides for changing previously defined resource values. The prefix
“!” on a resource specification indicates that the following expression is to be treated as a
mutation expression, rather than a simple value for the resource:

!fstab.size_root mutation expression

It is possible to write a mutation expression to perform any arbitrary transformation of a
previously defined resource value. For example, it would be possible to write a mutation
that added some constant value to the previously declared partition size. However, this can
be extremely confusing and it is recommended that the use of mutations is restricted to a
small number of predefined macros. These are contained in the header filemutate.h
(A.1) supplied with the LCFG server, and described in section5.1. Macros ending inQ
expect their arguments to be a quoted string (in Perl syntax) which provides a way of
quoting arguments that cause problems with the C preprocessor.

(42) Revision 0.99.63: 06/01/05 14:10

Chapter 5. Node Configuration 5.2. Configuration File Syntax

mSET(A)
mSETQ(A)

Override the previous value of the resource withA.

mEXTRA(A)
mEXTRAQ(A)

Append the itemA to a (space-separated) list.

mADD(A)
mADDQ(A)

Append the itemA to a (space-separated) list if it is not al-
ready present.

mPREPEND(A)
mPREPENDQ(A)

Prepend the itemA to a (space-separated) list.

mREPLACE(A,B)
mREPLACEQ(A,B)

Replace the itemA in a (space-separated) list with itemB.

mREMOVE(A)
mREMOVEQ(A)

Remove the itemA from a (space-separated) list.

mCONCAT(A)
mCONCATQ(A)

Append the stringA to the previous vaue of the resource.

mPRECONCAT(A)
mPRECONCATQ(A)

Prepend the stringA to the previous vaue of the resource.

mSUBST(A,B)
mSUBSTQ(A,B)

Replace the substringA with the substringB.

mHOSTIP(L)
mHOSTIPQ(L)

Replace any hostname in the (space-separated) list L with the
corresponding IP address, by performing a DNS lookup.a

aCare is required when using this function because the DNS lookup occurs only at compile time,
and subsequent changes to the DNS will not automatically trigger re-evaluation.

Figure 5.1: Standard mutation macros

The Complete Guide to LCFG (43)

The Complete Guide to LCFG Paul Anderson

For example6:

fstab.partitions_hda root swap
fstab.size_root 2000
fstab.size_swap 500
...
!fstab.partitions mADD(var)
!fstab.size_root mSET(1800)
fstab.size_var 200

This example produces the following results:

fstab.partitions = root swap var
fstab.size_root = 1800
fstab.size_swap = 500
fstab.size_var = 200

Note that it is not possible to mutate the default values provided in the component
default files. These default values are only used as a “last resort” if no other values have
been provided. Resources which have not previously been defined will appear as the null
string to any mutations.

✏ Custom mutation macros can easily be created by defining them in a local header file.
The mutation expression should be a Perl expression which accepts the previous value of
the resource in$_ and returns the new value of the resource. The characters “�” and
“�” are treated by the compiler as quotation characters and can be used to safely quote
the argument even if it contains standard Perl quotation characters. See themutate.h
header file (A.1) for examples.

5.2.5 Contexts

It is often useful to be able to specify a number of slightly different configurations for the
same client, to be used in different circumstances. For example:

❑ The mail relay on a laptop may need to be different according to the ISP that is
being used.

❑ A disconnected laptop should not attempt to contact a remote Kerberos server for
authentication at login.

❑ A student laboratory machine might be made available for use by remote users
outside of opening hours, so the authorised user list might be different.

6typically, the first group of declarations would be in some header file, and the second group would be
in the source file itself (or a different header file).

(44) Revision 0.99.63: 06/01/05 14:10

Chapter 5. Node Configuration 5.2. Configuration File Syntax

❑ The set of packages to be included at initial install time might be slightly diferent
from the packages to be loaded when the client is fully installed.

The LCFG client maintains an arbitrary set ofcontext variableswhich can be set to arbi-
trary identifiers, using thecontext command7. For example:

➜ context
dock=home

➜ context stuff=foo

➜ context
stuff=foo
dock=home

➜ context stuff=

➜ context
dock=home

The source configuration can specify several different values for a resource, to be used in
different contexts. For example:

mailng.relay mailhub.ed.ac.uk
mailng.relay[scheme=home] mail.myisp.com

In this example, when the context variablescheme has the valuehome, then the mail
component will usemail.myisp.com as the relay, and in all other cases, it will use
mailhub.ed.ac.uk .

If the context-specific value of a resource needs to be a variation of the context-free value,
then this can be achieved using aearly reference(see5.2.6). For example, the following
specification will addapache to the defaultboot.services except when the context
scheme is set tohome:

boot.services[scheme!=home] <%%boot.services%%>
!boot.services[scheme!=home] mADD(apache)

Context changes on the client can be initiated manually, from cron, or by any other pro-
gram. In the above case, for example, the context command will automatically be issued
by thedivine network component which manages the network schemes on laptops, and
by theEzPPPdialup program. Some common contexts include8:

7The context command usesom(6.2) to call the client componentcontext method, so that access can
be controlled with the clientomresources.

8Thenet variable may not be defined at all if thedivine component is not running. In this case, the
node can probably be assumed to be connected to the local network.

The Complete Guide to LCFG (45)

The Complete Guide to LCFG Paul Anderson

net=none There is no network available.
net=local The node is connected to the local (base) network.
net=remote The node is connected to some other network.
scheme=scheme The network scheme, as set by thedivine component, or

EzPPP.
dock= dock A laptop is inserted in some particular dock (eg.home).
install The node is being installed from scratch.
power=line A laptop is using mains power.
power=battery A laptop is using battery power.

✏ The context processing is implemented by the LCFG client. The invidivual compo-
nents see only a configuration change, and they do not need to be aware of whether this
is due to a source configuration change, or a change in context. It is also possible for ad-
ditional context-specific resources to be defined locally so that configuration information
can be used even where that information is not available on the server; for example, the
information allocated by DHCP to a roaming laptop. This may lead to some resources
having different values from those declared in the source configuration files. This capa-
bility should therefore be used with caution, and thedivine component is currently the
only case where this is used extensively9. The local resource definitions created by these
programs are stored under/var/lcfg/conf/profile/context .

The current implementation of context handling in LCFG is not good. If any context-
specific resource specification matches the current context, then that specification is used,
otherwise the context-free specification is used. It is an error to specify a context-specific
resource without a context-free specification of the same resource. If there are multiple
context-specific resources which match, then the most recently set context takes prece-
dence. Conditionals which depend on multiple context variables require careful con-
struction to ensure that they are always disjoint, and this is best avoided. Contexts are
persistent, even across reboots.

The conditional context expressions must appear in square braces immediately after the
resource attribute (no space)10. The expressions may include the following:

var True if the named context variable is set (non-null)
var=value True if the context variable has the specified value
var!= value True if the context variable does not have the specified value
expr1&expr2 Logical AND
expr1| expr2 Logical OR
! expr Logical NOT
(expr) Braces

Note that some resources are evaluated on the server, rather than the client (for example,
the profile component, or theinv component). It makes no sense to attach context
expressions to these resources.

9This is also useful for debugging.
10One exception is the use of contexts with packages; see5.2.8.

(46) Revision 0.99.63: 06/01/05 14:10

Chapter 5. Node Configuration 5.2. Configuration File Syntax

5.2.6 References

It is sometimes useful for the value of one resource to refer to the value of some other
resource. This can be achieved by using areference. For example, to include the physical
location of the node in the login banner:

kdm.greetstring HOSTNAME (<%inv.location%>)

The string<%inv.location%> is substituted with the value of theinv.location
resource which is the physical location from the inventory information.

In the above case, the reference is evaluated after all the other assignments and mutations
have been performed. This is known as alate reference, and it useful because it always
evaluates to the final value of the referenced resource, independent of the order. For
example, the value ifauth.users after the following specifications isjohn jane .

inv.allocated john
auth.users <%inv.allocated%>
!inv.allocated mADD(jane)

Sometimes, this is not what is required. In particular, it may be desirable to copy the cur-
rent value of some other resource, perhaps because we want to perform a mutation on the
copy (see the mail relay example in section22, for example). Alate referenceis notated
using a double percent sign and is evaluated as soon as it occurs. For example, the value
if auth.users after the following specifications is simplyjohn (inv.allocated
will have the valuejohn jane).

inv.allocated john
auth.users <%%inv.allocated%%>
!inv.allocated mADD(jane)

Notice that C preprocessor macros can often be used to achieve a similar effect to refer-
ences, but the use of references is generally preferred.

#define LOC my-location
inv.location LOC
kdm.greetstring HOSTNAME (LOC)

✏ It is possible to use references (or macros) to provide a common source of information
which may be used by several different components. For example, we could simply define
a dummy component (say,common)11 which contained some common information. If
several components required the same information, then they could reference the common
resources. Only the resources of the common component would need setting on a per-node
basis.

11A default file would need to be created for this component defining the supported resources.

The Complete Guide to LCFG (47)

The Complete Guide to LCFG Paul Anderson

5.2.7 Spanning Maps

References enable one resource to refer to the value of some other resource of the same
node. There is no such general mechanism for referencing resource values from other
nodes. However, there are some cases when a particular node really needs to know in-
formation about another node; for example, a DHCP server may need to know the MAC
addresses of its clients. Clearly, the MAC addresses of these clients could be specified
explicitly in the source file for the server, but this is not good, since the correspondence
between these values and the actual client source files must be maintained manually (pos-
sibly duplicating information, and possibly being inconsistent).

Spanning mapsprovide a mechanism for nodes topublishcertain resource values, and for
these resource values to be made available to other nodes whichsubscribeto the spanning
map. In the above example, the DHCP clients would publish their MAC addresses to a
spanning map and the server would subscribe to the spanning map to get the list of clients
and their MAC addresses.

The component author decides which resources will be published to a spanning map, and
the names of the resources that will be used when the component is subscribed to. In
general, it is not necessary to be aware of these details; to use the components it is simply
necessary to provide a name for the spanning map. This provides the link between the
publishers and the subscribers, and the resource name is often calledcluster . For
example, the DHCP clients might declare:

dhclient.cluster MYMAP
dhclient.mac 00:08:74:1A:52:7D

And the DHCP server might declare

dhcpd.cluster MYMAP

The author of thedhclient component has decided that themac resource will be pub-
lished to the spanning map named in thecluster resource.

The author of thedhcpd component had decided that it will subscribe to the map named
in the cluster resource an import the list of hosts into thehost resource, and their
MAC addresses into the corresponding list resourcesmac_host.

The user has only to supply the map name (MYMAP). All DHCP servers specifying this
map name will serve all the DHCP clients which specify the same map name. By speci-
fying different map names, it is possible to create clusters of machines served by different
servers. Since all spanning map names belong to a single namespace, it is usual to have
map names of the formservice/ cluster; for example:dhcp/inf1 12. Notice that clients
can be added to, and removed from the cluster without changes to the server source file.

✏ It is possible for a node to be both a publisher and a subscriber to the same map. In
this case, the compiler may require several passes to perform the final evaluation, and this

12There is no special significance to the/ symbol.

(48) Revision 0.99.63: 06/01/05 14:10

Chapter 5. Node Configuration 5.2. Configuration File Syntax

will be detected automatically. A limit is imposed on the number of such recompilations
to prevent an infinite loop in the case of circular references. Nodes which subscribe to a
spanning map will have the publication of their profile deferred until all compilations have
been completed. This is necessary to avoid advertising incorrect profiles at intermediate
stages of the compilation. This means that it is wise to avoid situations where every node
is a spanning map subscriber.

5.2.8 Package Lists

The LCFG source files specify a list ofpackagesto be installed on the node, including:

❑ The package name.

❑ The version and release.

❑ An optional architecture.

❑ An optional set offlags.

Normally, the packages are given as Redhat RPM specifications which are interpreted by
the updaterpms component. However the list may be interpreted by any other com-
ponent on the client, and there is no reason why the list should not be used to represent
packages in any format, providing a suitable component is available to manage them.

The package list could be represented using normal resources, however the LCFG server
and client handle the package list as a special case to provide some useful features and
more efficiency. The packages are defined by theprofile.packages resource. The
value of this resource must be a (space-separated) list of specifications which may have
one of three different forms:

name- v- r The named package is added to the package list. If the spec-
ification is preceeded by a “+”, then this replaces any previ-
ous specification of the same package with a different ver-
sion/release. If the specification is preceeded by a “- ”, then
any previously defined version of this package is removed
from the list.

@filename A list of package specifications in the same format as above
(one per line) is read from the named file. The filename
should have an extension of.rpms . By default, an error is
generatde if the specified file does not exist; appending a?
to the filename will cause missing files to be silently ignored.

tag The value of the resourceprofile.packages tag is
used as a list of further specifications which are interpreted
recursively.

Typically, sets of common packages will be made available in the rpmcfg files, and in-
dividual nodes will select the required sets and perhaps add or subtract a few individual
packages. For example:

The Complete Guide to LCFG (49)

The Complete Guide to LCFG Paul Anderson

profile.packages dist local
profile.packages_dist @rh71.rpms @rh71updates.rpms
profile.packages_local @local.rpms @private.rpms
.....
!profile.packages mADD(special)
profile.packages_special +foo-1-2 -bar-5-6

The first few definitions might occur in a header file with the last two being specific to an
individual node.

Since the profile resources are interpreted by the compiler, context specifications can-
not be attached to theprofile.packages resources. However, as a special case,
context specifications can be appended to any package specification whether it appears
inside an rpmcfg file, or explicitly in a source file. This is often used to prevent packages
being installed during initial node installation13.

/* Do not install big packages at install time */
profile.packages mADD(bigstuff)
profile.packages_bigstuff bigpack-3-4[!install]

Theupdaterpms component supports a number of flags for controlling various options
of the RPM installation. For example, preventing the execution of the pre/post install
scripts. These flags can be specified by appending them to the package specification with
a “: ”:

/* Do not run pre/post install scripts */
profile.packages_noinst foo-3-4:s

updaterpms also allows an explicit architecture to be specified if the architecture of the
RPM is different from the default (i386). For example:

profile.packages_mp3 notlame-3.92-*/i686

5.2.9 Semantics

The LCFG language has evolved considerably from its initial simple conception. In an
attempt to maintain compatibility, the current language contains several historial artifacts
that can be rather confusing. The following situations in particular often cause problems:

❑ The default values for component resources (from the.def file) are only applied,
at the end of the compilation process, if no value has been provided for a resource
by any other source (or header) file. This means that it is not possible to mutate a
default value.

13They will be installed the first time the thatupdaterpms component runs after the node is installed

(50) Revision 0.99.63: 06/01/05 14:10

Chapter 5. Node Configuration 5.3. Configuration Deployment

❑ If a context is specified for a resource assignment, a separate “context-sensitive”
copy of the resource is created. This does not inherit any previous value of the
“context-free” resource, and subsequent mutations on either copy of the resource
do not affect the other copy.

❑ Mutations are frequently used to add package specifications to the profile package
list. Individual packages may be prefixed with+ or - which are only processed
when the final list is expanded. The interaction between these can be confusing,
especially if it is also complicated by context-specifications (see the previos item).

5.3 Configuration Deployment

Large installations will normally have LCFG servers configured to propagate configura-
tion changes to the nodes automatically. This usually happens soon after the new source
files have been saved. However, some knowledge of this deployment process is useful for
debugging, so it is described in this section, together with the manual alternative.

If any file included by a source file is changed, the entire file must be recompiled into
a new XML profile. This profile contains all the expanded resources for the individual
node. The server notifies the client of the change, and the client then fetches the new
profile. Individual components whose resources have changed are called to implement
the appropriate reconfiguration.

5.3.1 Compiling the Profile

The programmkxprof (see appendixC.3) is the LCFG compiler. This takes a list of
source files and compiles them into XML profiles. This can be run by hand, and any
compilation errors will be reported to the terminal, together with the offending files and
line numbers.

➜ mkxprof host035
** conflicting package specifications: p
** p-5-6: (/TEST/src/host035:7)
** p-8-9: (/TEST/packages/packages035.rpms:4)
** unrecognised package spec: tag2 (/TEST/src/host035:6)

After a successful compilation, the XML profile will be generated in the appropriate di-
rectory (usemkxprof -V to see the default directories). Normally, this directory will
be published using a web server, such as Apache, making the XML available to the client.

Manual compilation is useful for simple testing, but in practice, it may be necessary to
supply a large number of options tomkxprof defining the local directories to be used.
In many cases, the necessary header files may also only exist on some central server, and
not on the local workstation.

The LCFGserver component (see appendixB.52) is used to runmkxprof as a dae-
mon. The daemon maintains a database of file dependencies and regularly polls all the

The Complete Guide to LCFG (51)

The Complete Guide to LCFG Paul Anderson

LCFG files. If any file has changed, all the dependent files are automatically recompiled.
The server can also generate HTML status pages for each node to display error messages,
rather than requiring them to be retrieved from the server log file. See section36 for a
description of these status pages, and access to the server log file.

DICE runs an LCFG server which polls continually for file changes. As
soon as any file is committeda usingrfe , then all dependent files will be recompiled.
Errors will be shown on the web status page for the client.

adepending on how many changes the server is processing, there may be a delay of between a few
seconds and several minutes.

5.3.2 Profile Transport

When a profile changes, the server sends a simple UDP notification to the client, but does
not wait for an acknowledgement. Normally, the client will poll the server at regular in-
tervals in case it misses a notification. When the client sees that a new profile is available,
it fetches the XML using normal HTTP from the server. The XML is parsed and the
resources are stored in a local database.

Any components whose resouces have changed are called to perform a reconfiguration.
Exactly how and when the component decides to implement the reconfiguration depends
on the particular component. For example, some things can be changed immediately,
other things may need to wait until the user has logged out, or until the node is rebooted.

The current resource values being used by a client can be queried usingqxprof (see
appendixC.4). If the client is running thelogserver component (see appendixB.34),
then the resources can also be inspected remotely (see9.3).

✏ The client component attempts to optimise profiles fetches and parsing by only per-
forming these operations when it believes that they are necessary due to a change. The
install method of the client component can be used to force a new copy of the profile
to be fetched from the server and re-parsed. The install method can be also provided with
an explicit URL as an argument; this forces the client to fetch the profile from a different
server.

(52) Revision 0.99.63: 06/01/05 14:10

Chapter 6

Components

The set of component scripts on the client is responsible for maintaining the node config-
uration according to the resources in the profile. Each component manages a disjointsub-
systemof the node configuration; for example theinet configuration, or thesendmail
configuration. Theprofile.components resource defines the components which
will have resources included in the profile. Theboot.services resources (6.4.3) de-
fines which components will be started automatically at boot time.

Component scripts are called by theclient component whenever their resources change,
by the LCFG boot subsystem (6.4.3) at system startup and shutdown, and by various other
utilities usingom(6.2). The scripts are passed amethodargument describing the required
operation, in a similar way to System V init scripts. The method may optionally be fol-
lowed by standard and/or component-specific options (6.3). Most methods are assumed
not to be re-entrant and a per-component lock normally blocks method calls if some other
method is currently executing.

6.1 Component Methods

The following standard methods are supported for all components. All methods can be
called manually usingom(6.2), and most methods are also called automatically by other
parts of the system:

❑ configure – This is the most important method; it is called whenever the com-
ponent resources are changed. The component updates the configuration files to
reflect the new resource values, and notifies any associated daemons. Note that im-
mediate update of configuration changes is not always sensible and the component
may decide to defer certain changes; for example, if a user is currently logged on
to the console, thekdm component will defer updates which involve restarting the
daemon until the user had logged out.

❑ start – This is called at boot time to start a component. An error occurs if the
component has already been started.

The Complete Guide to LCFG (53)

The Complete Guide to LCFG Paul Anderson

❑ restart – This operation is the same asstart , except that the component is
first stopped if it is already running.

❑ stop – This method is called to stop the component at system shutdown. The
component stops any running daemons. A warning (but not an error) is issued if the
component is not started.

❑ run – This method is typically called fromcron , or manually, to perform some
ad-hoc operation, often depending on the method options. An error occurs if the
component has never been configured.

❑ logrotate – This method is conventionally called by alogrotate script to
notify any daemons that they should release logfiles.

❑ suspend – This method is called when an APM suspend occurs. There is no lock
on this method.

❑ resume – This method is called when an APM resume occurs. There is no lock on
this method.

❑ status – This method prints the current state of the resources being used by the
component. Note that this may not be the same as the resources currently specified
in the profile if an update is pending for some reason. Some components may use
this method to make other status information available, when a component-specific
option is specified. There is no lock on this method.

❑ log – This method prints the logfile for the component. Different logfiles or for-
mats may be produced by some components if a component-specific option is spec-
ified. There is no lock on this method.

❑ monitor – This method is used to request that the component report monitoring
information. The first argument is atag identifying the type of monitoring informa-
tion requested. This method is not widely implemented and is ignored unless the
component has been configured.

❑ reset – This method clears the error and warning files which are used by the status
display to determine the icon indicating the component status.

❑ unlock – This method forces removal of any locks.

Some components may define additional, custom methods, although this is discouraged,
and the use of custom options to standard methods (such asrun) is preferred.

6.2 Om

Since components are simple scripts, it is possible to call them just by executing the
script and providing the method as an argument. However, calling components directly
in this way is strongly discouraged; theomutility should be used to execute component

(54) Revision 0.99.63: 06/01/05 14:10

Chapter 6. Components 6.3. Method Options

methods. This provides access control for non-root users, sets up a standard environment
for component execution, and provides transparency in the location of the scripts. It
may also perform other functions in the future which would cause direct calls to behave
incorrectly.Omis called as follows1:

➜ om component method[options]

Access control for non-root users is specified using the following (per-component) re-
sources:

om methods
specifies the allowed methods.

om authorization
specifies the Perl module to be used for performing the authorization.

om user
specifies the username under which the component is to be run.

om acl method
specifies the authorization token for the methodmethod. The exact meaning of this
token depends on the specified authorization module.

The default authorization module isLCFG::Authorize which allows the permissions
to be specified in the LCFG source file asauthorize resources (see appendixB.7).

Under DICE, the moduleDICE::Authorize is used for authorization.
This interfaces to the LDAP-based DICE authorization service, and DICE capabili-
ties should be specified for the authorization tokens.

6.3 Method Options

The standard component framework accepts a number of generic options which can be
specified following the method name2:

-d (dummy)
The component actions are printed but not executed.

-D (debug)
Print debugging information.

1Some documents mentionom support for remote execution. This did exist in previous versions of
LCFG and may be re-implemented in the future, but it is not available in the current implementation – it is
normally sufficient to usessh to callomon the remote node.

2Note that invividual component may not always implement these options correctly.

The Complete Guide to LCFG (55)

The Complete Guide to LCFG Paul Anderson

-n (no strict)
Certain warning and error messages are supressed. For example, trying to stop a
component which is not started will normally generate a warning message. If this
option is used, the warning is not generated.

-q (quiet)
No messages are printed.

-t timeout(set lock timeout)
Normally, if a component is already executing, calls to most methods will block
until the existing instance terminates and releases the lock. This option specifies
a timeout so that the current call will terminate aftertimeoutseconds if the lock
cannot be obtained. Certain method calls do not lock (see the list above), and locks
can be broken using theunlock method.

-v (verbose)
Additional messages are printed. Note that holding down the shift key when a
component method starts executing will also enable this option3. This is useful at
boot time to enable more verbose logging on certain components.

Components may define additional component- and method-specific options. If present
these must be separated from the generic options by-- . For example:

om divine.start -v -- -C

6.4 Some Common Components

The LCFG system is highly modular and different nodes will normally run different sub-
sets of components, depending on the required services. However, a few components are
concerned with managing aspects of the LCFG system itself and these (or equivalents)
will usually be present on most systems:

6.4.1 The Profile Component

This is the only component which is mandatory in every profile, since the resources are
interpreted by the LCFG server (mkxprof) and used to determine how to compile the
profile. Theprofile component is not a “real” component, in the sense that there is no
code for the the client.

The profile resources specify such things as the list of components and packages to
be included in the profile (and their versions), and the acces controls on the XML profile.
AppendixB.45describes the supported resources.

3Not currently implemented under Solaris.

(56) Revision 0.99.63: 06/01/05 14:10

Chapter 6. Components 6.4. Some Common Components

6.4.2 The Client Component

Theclient component manages therdxprof daemon. This watches for changes to
the published profile, downloads new copies, parses the profile, and calls theconfigure
method for any components whose resources have changed (see appendixB.10).

6.4.3 The Boot Component

By default, LCFG does not use the normal System V init process. Instead, theboot
component determines what to run (and in what order) when the system runlevel changes.
This allows the services and their order to be determined from the LCFG resources, rather
than fixed files. It also allows services to be started or stopped dynamically as required
when the configuration changes. A mixture of LCFG components are traditional System
V init scripts can be managed. For example, the following resources could be used to
add the System V init scriptypbind and the LCFG componentmailng to the list of
services started at boot time:

!boot.services mADD(rc_ypbind)
!boot.services mADD(lcfg_mailng

Note the use of the prefixrc_ or lcfg_ to distinguish the two different types of service.

The boot component can also arrange to call componentsuspend /resume methods
at the appropriate time, and to call componentrun methods from a singlecron job
(normallly nightly). The boot component options are describ more fully in the manual
page (see appendixB.9).

☞ ** TODO **
How is the boot component hooked in to the initttab?

In a standard LCFG installation, thelcfginit script is also called from theinittab
to clear temporary LCFG files and perform other initialization at the start of the boot
process.

6.4.4 The File Component

The file component is a general-purpose component which can be used to easily create and
customize configuration files, directories, or links. This can be used to configure simple
applications without the need to write a special component.

Resources are used to specify a template file and values to be substituted into the template.
The template is normally installed site-wide, from an RPM, and the substituted values
used to configure the file and customize it on a per-machine basis.

For example, we could distribute a template (containing variable references) for thephp.ini
configuration file (call itphp.ini.tmpl):

The Complete Guide to LCFG (57)

The Complete Guide to LCFG Paul Anderson

...
engine = <%v_phpenable%>
...

We could then configure the file component to create thephp.ini file from this template:

!file.components mADD(file)
!file.files mADD(php)
file.type_php template
file.file_php /etc/php.ini
file.tmpl_php /etc/php.ini.tmpl

and set the default values for the variables:

!file.variables mADD(phpenable)
file.v_phpenable On

Individual node configurations can now control the php engine simply by setting the value
of this variable in their source files. Note that no special code is required.

✏ If several different applications are to be configured using the file component, it is
often convenient to assign each application a separate default file so that it may use its
own variable namespace. Thefile component supports suchmanaged components, still
without the need for any special component code.

Very small templates can even be included in-line in the resources, avoiding the need for a
template RPM. For example, thebluzez.pin file needs to contain only a PIN number:

!file.components mADD(file)
!file.files mADD(bluez)
file.type_bluez literal
file.file_php /etc/bluez.pin
file.tmpl_php <%v_bluezpin%>
!file.variables mADD(bluezpin)
file.v_bluezpin 1234

Other applications include the creation of user home directories, and arbitrary links, and
the ability to control file attributes The file component is described in the manual page
(see appendixB.17).

6.4.5 The Inventory Component

The inventory “component” is really a pair of “pseudo-components”:

The inv component can be included in the profile of normal nodes, and used to define
basic inventory information for the node; see the manual pagelcfg-inv (B.25) for
details of the available fields. This information is published to a spanning map (5.2.7).
For example:

(58) Revision 0.99.63: 06/01/05 14:10

Chapter 6. Components 6.4. Some Common Components

!profile.components mADD(inv)
inv.model Dell Optiplex
inv.allocated fred user
inv.manager the boss
inv.location myroom

The inventory component (B.26) can be included in a “pseudo-node” (10.4.9) source
file to import the information from the spanning map and make the inventory information
for all real nodes available in the single profile of the “pseudo-node”. The following
example is the complete source file for an inventory pseudo-component:

profile.components profile inventory
profile.version profile 2
profile.version inventory 1
profile.format XMLInventory
profile.ng statusdisplay false

The XMLInventory format module, specified above, can be used to publish the in-
ventory profile in a special format which contains only the inventory information; for
example:

<node name="red">
<model>Dell Optiplex</model>
<allocated>fred user</allocated>
<manager>the boss</manager>
<location>myroom</location>
...

</node>
<node name="blue">

...
</node>
...

The perl moduleLCFG::Inventory (F.2) can be used to fetch this file from the server
and parse the contents. The demonstration programsminv and jfile-inv use this
module to display inventory information, and to create a Palm Pilot inventory database (in
JFile format) respectively.

The Complete Guide to LCFG (59)

The Complete Guide to LCFG Paul Anderson

(60) Revision 0.99.63: 06/01/05 14:10

Chapter 7

Software Updating

The LCFG configuration system specifies which packages should exist on the node, and
it manages the configuration files for these packages. It relies on an external package
management system to perform the actual package installation (and delete/update), and to
keep track of which packages are installed.

By default, LCFG uses Redhat RPM to manage the packages, and theupdaterpms
program to control the synchronization of installed packages with the LCFG specifica-
tion. However, a single component (updaterpm by default) is called to perform the
software update, and this could easily be replaced by some other update mechanism; the
requirement is simply that therun method synchronizes the software on the system (by
adding and deleting packages) so that it matches the specifiction in the LCFG profile. A
different process is used, for example, by the Solaris port (see chapter12).

The update program may notify the LCFG client (by touching the file/etc/LCFG-RELEASE)
when an update has been successful. This allows the LCFG status page to display a
warning for those hosts which have not had sucessful updates for a specified length of
time; see theprofile.maxuptime resource (appendixB.45). The contents of the
LCFG-RELEASEfile (installed from a package) may also be used to give an identity to
the overall “release” of the installed software. This too can be checked by the server and
flagged if it is not as expected.

7.1 The Package List

The LCFGclient component maintains a list of required packages in the file:

/var/lcfg/conf/profile/rpmcfg/nodename

This file is updated every time that a new profile is received which contains changes to
the package specifications1. The software update component (by default,updaterpms)
reads this list when itsrun method is called to perform the update. There are several
possibilities for configuring exactly when therun method is called:

1It is also updated when a context change takes place which affects the package list.

The Complete Guide to LCFG (61)

The Complete Guide to LCFG Paul Anderson

❑ Theclient.runupdate resource may be set to initiate a software update im-
mediately whenever the list changes. In practice, this is likely to be a little disruptive
for users, so one of the following methods is normally used ...

❑ The update component is added to theboot.run resource so that it it called when-
ever theboot component runs. Normally this happens once nightly – fromcron ,
as specified by thecron.run_boot resource.

❑ For laptop users and other cases where the node may only be connected intermit-
tently, the update component may be run manually. Normal users can be permitted
to do this by setting theupdaterpms.om_acl_run resource, for example to a
capability for the user, or simply to<console> (for any user at the console). See
section6.2for a description of ACLs.

The package list contains one package specification per-line, in the following format:

name- version- release

The version and the release may contain wildcard expressions which are interpreted by the
update program to mean “the latest available”. The allowable syntax of these expressions,
and their evaluation depends on the update program; the manual page forupdaterpms ,
for example, describes the allowable format.

The use of wildcard versions is very convenient during development, since new ver-
sions of packages can be easily installed without changes to the profile. Their use is not
recommended for production installations however, since it is no longer possible to tell,
just from the profile exactly what software is installed on each machine.

The package specification may optionally be followed by an optional architecture, if the
required architecture is different from the default (i386 or noarch).

This may optionally be followed by a “: ” and a number of single-character flags. The
meaning of these flags depends on the update program being used; theupdaterpms
flags are described in the manual page.

☞ ** TODO **
We need an updaterpms man page

The package list is designed to be passed through the C preprocessor (cpp) and contains
several cpp directives:

❑ #include may be present to include local rpm lists.

❑ #ifdef is used to allow different sets of rpms to be selected. These are not nor-
mally used by the update program, but therpmcache component, for example,
defines a special symbol, so that it may obtain a list of all packages, regardless of
the current context, since it must maintain a cache which is valid in all contexts.

❑ #pragma LCFG derive gives the location(s) in the LCFG sources which spec-
ified the following package (if known).

(62) Revision 0.99.63: 06/01/05 14:10

Chapter 7. Software Updating 7.2. Updating RPMs

❑ #pragma LCFG context gives the context in which the following package was
specified (if context-specific). Note that the update program does not need to be
aware of contexts. If a context change affects the package list, it will be updated,
and the update component will be run (if specified).

7.2 Updating RPMs

Theupdaterpm program compares the installed RPMs with the RPMs specified in the
package list and installs/updates/deletes RPMs to make the installed packages correspond
to the specification.

Theupdaterpm.rpmpath resource specifies a colon-separated list ofrepositories
in which to search for the RPMs themselves. These repositories may be local (or network-
mounted) directories, or they may be URLs of http-exported directories. Repositories
which are exported via http must also contain a file calledrpmlist which simply lists
the RPMs in repository, one per line; for example, this could be generated by the com-
mands:

☞ ** TODO **
I’m confused by this. Should it be colon or comma-separated? What si the name of the
resource? Is the man page right? It doesn’t say you can have a PATH.

➜ cd respository

➜ ls *.rpm >rpmlist

Every RPM in the repository must also have a corresponding file with the same name,
prefixed by a dot. This file contains meta-information for the package and is used by
updaterpms to avoid the overhead of reading the entrire RPM file itself to extract the
information. The programgenhdfile is used to generate these files:

➜ genhdfile mpdist-3.5.2-2.i386.rpm

➜ ls .mpdist-3.5.2-2.i386.rpm
.mpdist-3.5.2-2.i386.rpm

It is a common cause of problems forrpmlist or hd files to be missing or out of
date. It is strongly recommended that repositories are managed using scripts which ensure
that these files are maintained automatically.

Under DICE therpmsubmit script is used to submit RPMs to the repos-
itories. This ensures that source RPMs are submitted (when available), and that the
necessary files are updated.

The Complete Guide to LCFG (63)

The Complete Guide to LCFG Paul Anderson

7.3 The RPM Cache Component

The rpmcache component allows a cache of RPMs to be maintained on the local disk.
This is useful in several cases:

❑ Theupdaterpms component installs RPMs as they are downloaded. Especially if
the network connection to the repository is unreliable, it may be desirable to ensure
that all the necesssary RPMs are available on the local disk before commencing the
update.

❑ If a node is liable to be disconnected from the network (for example, a laptop), a
local cache of RPMs can be used to re-install or check the installation of individual
packages without being connected to the network.

❑ A local cache of RPMs can be re-exported as a repository to other LCFG clients.

Typically, the RPM cache component is configured to fetch the RPMs from the remote
repositories, and to triggerupdaterpms when it has finished.updaterpms is config-
ured to use the local cache as its repository.

☞ ** TODO **
This example needs doing
We need to say something about rpmcache at install time

✏ The RPM cache component is based on a Perl module which has functions for reading
package list files, and downloading RPMs, that may be useful to other programs. This is
used, for example, to automatically download the set of component RPMs and build the
appendices for this guide.

(64) Revision 0.99.63: 06/01/05 14:10

Chapter 8

Node Installation

The tutorial in chapter3 describes how to install and run the LCFG core software on top of
an existing Redhat 9 installation. It is perfectly possible to use LCFG in this “lightweight”
way, simply to manage the configuration of a few components, while using some other
technique for installing and managing the base operating system. However, the real ad-
vantage of LCFG only become fully apparent when it is used to manage the entire system.
The LCFG install process allows new nodes to be created from “bare metal”, using only
a repository of RPMs and the profile to describe which RPMs are to be loaded, and how
they are to be configured:

❑ The node is booted from removable media (or from the network), using a temporary
root filesystem (theinstallroot).

❑ The installroot boot process fetches the profile for the node and calls a number of
components which are particularly concerned with install-time functions such as
partitioning the local disk and creation of initial configuration files.

❑ A number of normal components are run to configure various aspects of the local
disk. In particular, theupdaterpms component is run to install the software onto
the new system. Apart from the fact that the target filesystem is not the current root,
these components function in exactly the same way as they would when reconfig-
uring a normal running system.

❑ The node is rebooted on to the newly creating filesystem, and the installation pro-
cess is completed by the standard components when they are started as part of the
normal boot sequence.

The installation process is clearly very specific to the individual operating system. For
example, the Solaris port uses a completely different mechanism involvingjumpstart
(see section12). However, the installation process may even require slight modifications
for individual sites; for example, there may be differences in the parameters supplied by
the DHCP server, or other small differences in site services. Theinstall component
(see below) is designed to be highly configurable, so that such differences can be easily
accomodated.

The Complete Guide to LCFG (65)

The Complete Guide to LCFG Paul Anderson

8.1 Creating the Installroot

A bootable ISO image of the installroot is available fromlcfg.org , so creation of a
new installroot is only necessary if, for example, additional drivers are required at install
time.

The installroot is a bootable Linux filesystem. Thebuildinstallroot program al-
lows this filesystem to be easily created from a standard LCFG profile which specifies the
packages that it should contain:

❑ Create a source file (say,myroot) for the installroot. A suitable default copy is
available fromlcfg.org . This should include at least the packagelcfgbuildinstallroot .

❑ Compile this into an XML profile, exactly as if it was a normal node.

❑ Usebuildinstallroot to create the installroot image:

/usr/sbin/buildinstallroot -f -p myroot -o /r.iso

This will create an installroot filesystem in/r and an iso image in/r.iso .

☞ ** TODO **
We need to put a default copy of the installroot source on lcfgf.org
We need a man page for buildinstallroot
Where does buildinstallroot get its profile from ?
I don’t have lcfg-buildinstallroot in any of my package sets
We need to put the ISO on lcfg.org

8.2 Booting the Installroot

The ISO installroot image can be used to create a bootable CD, which is the easiest way
of performing a new installation.

If the hardware supports PXE booting, then the filesystem image of the installroot can be
used to perform a nework install:

☞ ** TODO **
How do we do PXE installs?

8.3 Install Parameters

When the installroot boots, it attempts to use DHCP to obtain the network parameters. If
DHCP is not available, then these parameters can be supplied by providing a file on an
(ext2-formatted) floppy disk.

(66) Revision 0.99.63: 06/01/05 14:10

Chapter 8. Node Installation 8.4. Install-time Components

☞ ** TODO **
What is the disk file called
What are the parameters

The installroot also needs to know the URL of the profile server. This can be supplied
by using the DHCPuser-class option. A typical DHCP server configuration might
include:

subnet ... {
...
option user-class "http:// server.domain/profiles";
...

}

If this DHCP option is not present, the URL can be given by specifying a variable in the
floppy disk configuration file. If this is not available, the user will be prompted for the
URL of the profile server.

☞ ** TODO **
What is this variable ?

8.4 Install-time Components

Most of the components which run from the installroot, when building a new system, are
exactly the same components which run on the final live system. Some of these compo-
nents, however, have specificinstall methods to perform special operations at install
time. For example, the client component needs to fetch an initial version of the profile
before any of the normal resources are available. Thefstab component is another im-
portant example (see appendixB.19). This is responsible for partitioning the local disks
according to the resources in the profile1.

The install component is the install-time equivalent of theboot component (see
section6.4.3); it determines all the other commands which are run at install time. This
is highly flexible, since these commands may be arbitrary shell commands, specified as
resources. This allows the complete installation process to be specified exactly via the
profile. Theinstall.methods resources lists a set of tags for the commands, and the
commands themselves are specified by the list elements. For example, if the DHCP does
not supply a valid NTP server, we can hardwire the NTP server which is used to set the
clock at install time, by replacing the command:

!install.imethod_gettime \
mSET(%gettime% ntpdate my-ntpserver)

1Note that changes to the disk-partitioning resours are only implemented at install time; disks are not
repartitioned “on the fly”!

The Complete Guide to LCFG (67)

The Complete Guide to LCFG Paul Anderson

Or we can execute some command before setting the time, by adding another command
immediately before this one:

!install.imethods mREPLACE(gettime,mycmd gettime)
!install.imethod_mcmd mSET(%oneshot% my-command)

(68) Revision 0.99.63: 06/01/05 14:10

Chapter 9

Managing an LCFG Server

9.1 Configuring a Server

☞ ** TODO **

9.2 Organising Source Files

☞ ** TODO **

9.3 Server Plugins

☞ ** TODO **

The Complete Guide to LCFG (69)

The Complete Guide to LCFG Paul Anderson

9.4 Authorization and Security

The contents of the LCFG profile should be considered public; any truly sensitive infor-
mation should be encrypted at the application level, since the profile is plainly visible on
both the server and the client, and most sites will want to distribute profiles freely inside
the local firewall. However, many sites may want to make profiles available across the
Internet, for use by portables and remotely managed nodes.

Since profile distribution is not part of LCFG, and is normally handled by an external
webserver, profile access control cannot be completely managed by the LCFG server.
However, the server does provide support for automatic generation of access control files
which can be used by Apache to configure profile access on a per-node basis:

9.4.1 Access Control Files

Apache normally reads a single access control file called.htaccess in the directory
containing the profile. However, it is often useful to support more than one access con-
trol file for use in different situations; for example, different access restrictions may be
required when using SSL or plain HTTP. This can be configured into Apache using direc-
tives such as the following:

<VirtualHost *>
AccessFileName .htaccess

</VirtualHost>

<VirtualHost *:443>
SSLCertificateFile /usr/share/ssl/certs/mycert.pem
SSLCACertificatePath /usr/share/ssl/certs
SSLEngine on
AccessFileName .sslaccess

</VirtualHost>

The LCFG server can create arbitrary access control files, such as those specified in this
configuration by defining resources such as the following:

profile.auth http ssl
profile.file_http .htaccess
profile.file_ssl .sslaccess

9.4.2 Access Control

An access control string specifying permitted IP address ranges can be given for each
access control file:

(70) Revision 0.99.63: 06/01/05 14:10

Chapter 9. Managing an LCFG Server 9.4. Authorization and Security

profile.acl_http <%profile.node%>.<%profile.domain%>
profile.acl_ssl 129.215

This example would restrict plain HTTP access to the node itself and SSL access to any
nodes with an IP address of the form129.215.*.* . The access control string should
conform to the syntax required by the Apacheallow from directive.

9.4.3 Authorization

In addition to address-based access control, it is possible to specify basic authorization
directives. These applyin addition to any access control; if the access control directives
are not present, or if they deny access, then a username and password can be used to gain
access:

profile.passwd foobar
profile.pwf_http auto

Theprofile.passwd specification causes the server to automatically create an Apache-
compatible DB password file and make an entry for the fully-qualified hostname with
the given password. The second resource permits access to any client using the HTTP
protocol and supplying the given password (with the FQDN as username). An explicit
password file could be specified to make use of some existing authentication mechanism,
rather than using the automatically generated file.

The LCFG client will cache any password that is defined in a profile and use this password
when making future requests. Typically, a laptop, for example, may be initially installed
on the local network where the access control permits the profile to be downloaded freely.
This profile contains the initial password which is then used for subsequent requests when
the laptop is operating remotely and authorization is required.

Note that, if neither anacl , nor apwf resource appear for a particular access control file,
then no access control file will be created1, and the profile will be freely accessible.

9.4.4 Protecting Other Web Files

The server provides a mechanism using thelinkdir resource for arbitrary directories
to be linked to the web space for publication. By default, this is used to publish the
directories holding the status CGI scripts, the help files, and the icons:

server.linksdirs cgi help icons
server.src_cgi ...
server.dst_cgi ...
...

1Any existing file will be deleted.

The Complete Guide to LCFG (71)

The Complete Guide to LCFG Paul Anderson

It is usually desirable to provide access control files for these directories as well as the
profiles themselves. This is possible using resources such as the following:

server.auth_cgi hhtp
serevr.file_http .htaccess
server.acl_http 129.215
server.pwd_http auto

In this case, any valid user in the password file is permitted access.

9.4.5 Acknowledgements and Notifications

The LCFG server uses simple UDP packets to notify clients when new profiles are avail-
able. The client uses a similar mechanism to acknowledge profile changes and to return
status information to the server.

The notification packets contain no data and are therefore not authenticated in any way. It
is possible that large volumes of faked notifications could cause a denial of service attack,
and if this is considered a problem (unlikely), then notifications should not be permitted
and the client should be configured to poll regularly for new profiles.

The acknowledgements do contain important status information. If a password is defined,
then the acknowledgement packets will be signed (but not encrypted) using the supplied
password, and the signature will be checked by the server. This offers some degree of
security, but is still technically suceptible to various DOS and replay attacks.

(72) Revision 0.99.63: 06/01/05 14:10

Chapter 9. Managing an LCFG Server 9.5. The Status Display

9.5 The Status Display

LCFG is not intended to provide a full monitoring system, however if the server compo-
nent is being used to run the compiler as a daemon, then it can maintain HTML pages
showing basic status information for each node. Normally, CGI scripts are used to gen-
erate these pages “on the fly”, but they can also be generated statically (see the resources
for the server component inB.52).

These pages show information from three sources:

❑ Static information obtained by the server when compiling the profile for the node.
This includes basic inventory information, and any compilation errors.

❑ Information returned by the client in simple UDP acknowledgement packets. This
includes some simple monitoring information from the running node (for example,
the boot time), and basic status information for each component on the node (is it
running? has it generated any errors? etc.).

❑ The node itself may be running alogserver component (B.34). This is a small
web server which makes the LCFG logs, and other detailed information available
directly from the node itself via HTTP. If this component is running, the status page
will provide links to the appropriate URLs.

The status summary page is normally available at a URL of the form2:

http://lcfg. lcfg-server/cgi/index.cgi

An example is shown in figure9.1. If the CGI scripts are being used, then the page will
also include a an option to enter a query string for selecting the displayed nodes.

The “Help” button displays a page showing the meaning of the various icons. The fol-
lowng points should be noted:

❑ The client normally sends acknowledgements when polling for a new profile, or
whenever an event change occurs (error, etc). A throttle algorithm prevents clients
sending rapid acknowledgement streams and this introduces a slight delay in notifi-
cation.

❑ The main display is only updated at the end of a server pass. The frequency depends
on the server resources, but there may be a significant delay (20mins, for example)
if the server is recompiling a large number of profiles. The main display be also be
out of sync with the individual client dipslays during this time.

❑ Nodes will be marked as “late” if no acknowledgement has been received within
the latencytime. This time is the maximum time that would normally be expected
between client acknowledgements, and is based on the sum of the poll times of the
client and server components.

2The URL will be different if static pages are being used.

The Complete Guide to LCFG (73)

The Complete Guide to LCFG Paul Anderson

❑ Error and warning conditions can only be set by calling theReset() method of
the offending components (or by rebooting).

❑ If client nodes have aninv component in the profile (6.4.5), then the server will
publish the inventory fields listed in theinv.display resource on the status
page.

(74) Revision 0.99.63: 06/01/05 14:10

Chapter 9. Managing an LCFG Server 9.5. The Status Display

LCFG: nikita.inf.ed.ac.uk
profile server 2.1.64

[Help]

inf.ed.ac.uk

green square blue ! yellow ! yellow dot red power switch client017a XML 15/12/04 07:43:55

green square blue ! red ! green square magenta * client017b XML 15/12/04 07:43:55

green square red square gray ? gray ? gray ? client017c XML

green square green square red ! red dot green square client017d XML 15/12/04 07:43:55

green square blue ! red ! blue dot magenta * client017e XML 15/12/04 07:43:55

Last updated: 15/12/04 07:43:57

Figure 9.1: Summary Page

The Complete Guide to LCFG (75)

The Complete Guide to LCFG Paul Anderson

green square blue ! yellow ! yellow dot red power switch client017a.inf.ed.ac.uk up [Help]

Inventory Info

Model: Type1

Location:

Serial No: 3456

Allocated: fred

Manager:

Owner:

Os:

Status

Client version: 2.0.something

XML profile published: 15/12/04 07:43:52

Last acknowledged profile: 19/04/02 15:53:35

Last acknowledgement: 15/12/04 07:43:55

Last known address: localhost (127.0.0.1)

Last booted: 30/07/02 18:08:59

No errors, no warnings

Components

blue square yellow ! green square apache [warnings] [resources] [doc]

green dot green square green square inv [resources] [doc]

blue square green square green square logserver [resources] [doc]

green square green square magenta * mailng [resources] [doc]

green X green square red power switch nfs [log] [resources] [doc]

green dot green square green square profile [resources] [doc]

Last updated: 15/12/04 07:43:57

Figure 9.2: Individual Client Display

(76) Revision 0.99.63: 06/01/05 14:10

Chapter 9. Managing an LCFG Server 9.5. The Status Display

logserver @ nikita.inf.ed.ac.uk : log

[run] [pid] [status]
[IMAGE] [IMAGE] [IMAGE] [IMAGE] [IMAGE]

none

logserver @ nikita.inf.ed.ac.uk : log

[run] [pid] [status]
[IMAGE] [IMAGE] [IMAGE] [IMAGE] [IMAGE]

Figure 9.3: Logserver Display

The Complete Guide to LCFG (77)

The Complete Guide to LCFG Paul Anderson

(78) Revision 0.99.63: 06/01/05 14:10

Chapter 10

Writing Components

Each subsystem on a node which is configured by LCFG requires a component script to
read configuration resources from the node profile and generate the appropriate config-
uration files and daemon options. If the subsystem involves a daemon process, then the
component usually controls the lifecycle of the daemon as well (by stopping and start-
ing it); this allows the component to notify (and perhaps restart) the daemon when the
configuration changes, and it allows LCFG resources to control which daemons should
run on a particular node. Components also obey certain conventions about their output
and logging, so that status information from the components is relayed to the server for
display on the status page, and the logs are available via the logserver (seeB.34).

Writing a new component usually involves the following steps:

❑ Consider whether it is necessary to write a new component at all. Thefile compo-
nent (6.4.4) can handle most cases which involve only the creation of configuration
files. If it is necessary to manage a daemon, or perform more complex processing,
then a custom component probably will be required.

❑ Create a default file with the types and defaults for the resources to be used (10.4).

❑ Choose a language (10.1).

❑ Use the appropriate framework (10.3) for the language to create a skeleton compo-
nent. It is often convenient to start by copying a similar component; theexample
(H.1) or perlex (H.2) components are minimal skeletons in shell and Perl respec-
tively.

❑ Write code for theconfigure method (10.3.11) to create the necessary configu-
ration files from the LCFG resources.

❑ If a daemon is involved, write code for the methods to manage the lifecycle of the
daemon (10.3.12).

❑ Code any other methods (6.1) that may be require special treatment.

❑ Install the component on the client, and the default file on the server (10.7).

The Complete Guide to LCFG (79)

The Complete Guide to LCFG Paul Anderson

Chapter11 describes the tools that are normally used for building and packaging LCFG
components. The use of these tools is recommended, and the examples in this document
assume their use. Theexample component (H.1) is a simple illustration of the buildtools
in use.

10.1 Choosing a Language

The first consideration when writing a new component is probably to decide on the imple-
mentation language; an interface to the standard framework is available for shell (bash)
and Perl components. Writing components completely in any other language is inadvis-
able, since this would involve duplicating a lot of the functionality of the framework, and
would entail an ongoing maintenence as the framework is upgraded. Of course, it is pos-
sible for a shell (or Perl) component to call helper application written in any language.
To some extent, the choice of language is a personal decision, however the different lan-
guages are suited to slightly different applications:

❑ If a new daemon process is to be written, and can be written in Perl, then a Perl
component is highly recommended; the Perl library component provides support
for communicating configuration changes to a running daemon, and for reporting
messages directly into the LCFG status system. Thevmidi component (B.62) is a
good example of a simple daemon component in Perl.

❑ If the component is very simple and just creates a few configuration files, then
a shell component is probably most appropriate, especially if those configuration
files can be generated by the template processor (10.3.3).

❑ If the component is intended to manage a pre-existing daemon, then a shell com-
ponent is usually sufficient. The component must start and stop the daemon, notify
configuration changes, and ensure that any output from the daemon is routed to the
LCFG logging and monitoring system. If access to the C source code of the daemon
is available, then routines from the framework C library can be added to the daemon
itself handle status reporting.

❑ Perl components may be more portable to other platforms, than the rather bash-
specific shell code.

10.2 Portability Issues

The current version of the LCFG core (utils , ngeneric , client), and several com-
ponents, now run on Solaris, as well as Linux. There is also an experimental port to Mac
OS X[Har03]. The following guidelines are suggested to aid in writing components which
will be portable across platforms:

❑ In makefiles and scripts, use the OS-specific symbols defined inos.mk (E), rather
than explicit program names. The Solaris port depends on the GNU versions of

(80) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.3. The Component Framework

several programs which have non-default names when installed on Solaris (e.g.
gmake).

❑ Check for the existence of shell commands or alternatives. For example, thesetsid
anddnsdomainname commands do not exist under Solaris, but versions are pro-
vided with thelcfg-utils module.

❑ Useautoconf or something similar to produce portable C code if this is neces-
sary. Writing portable Perl is usually much easier.

❑ Try to ensure that the first five letters of package names (after thelcfg-) do not
conflict with other packages; Solaris package names only use the first five char-
acters. Similarly, for subsiduary packages, ensure that the first three letters of the
package plus the last two letters of the subsiduary package name do not conflict
with any other packages (or subsiduary packages).

❑ Do not assume thathostname returns a fully-qualified domain name.

❑ Only the following subset ofspecfile directives are handled automatically by
pkgbuild . If no other significant directives appear in thespecfile , then So-
laris packages can be created automatically:

❑ In the header,Summary, Name, Version , Release , Vendor , Source ,
andBuildroot . Anything else will be ignored bypkgbuild .

❑ In the main section,%package , %prep , %build , %install , %pre, %post ,
%preun , %postun , %files , and%clean . Anything else will be ignored
by pkgbuild .

❑ In the%prep section, only%setup is supported.

❑ In the %files% section,%defattr , %attr (with comma-delimited at-
tributes), and%doc1.

It is also helpful to add aPlatforms section to the manual page listing the supported
platforms.

10.3 The Component Framework

Creation of LCFG components is supported by the packageslcfg-utils andlcfg-ngeneric .

lcfg-utils provides C libraries, Perl bindings, and shell commands for a number of
standard functions:

❑ lcfgmsg (C.2) is a command-line utility, andLCFG::Utils (F.5) is a Perl mod-
ule, both based on the C libraryliblcfgutils (G.1). These routines format
and route error and log messages, as well as notifying the client component (and
ultimately the server) of status changes (10.3.5).

1Relative-path%docs that are installed under/usr/share/doc with RPM are currently not pack-
aged.

The Complete Guide to LCFG (81)

The Complete Guide to LCFG Paul Anderson

❑ qxprof (C.4) is a command-line utility based on the Perl moduleLCFG::Resources
(F.3). This copies resources between various formats; resources can be read from
the profile, from a file, from the command line, or from the environment. The val-
ues can be written to a file or the environment. This is the primary interface to the
profile. These functions are called automatically by the generic components (see
below) and it is not usually necessary to call them explicitly from component code.

❑ sxprof (C.7) is a command-line utility based on the Perl moduleLCFG::Template
(F.4). This takes a flat-text template file and substitutes variable values from LCFG
resources. As withqxprof , resource values can be obtained from several sources.
For many components,sxprof is sufficient to generate complete configuration
files directly from LCFG resources without any additional coding (10.3.3).

lcfg-ngeneric providesgenericcomponents which act as superclasses for creating
component instances. These provide the default semantics for the standard methods, in-
cluding resource loading, locking, error checking, and standard option processing. They
also provide additional utility functions, and a convenient access to the functions in the
lcfg-utils library. The Shell generic component (10.3.1) consists of a file of shell
functions which can be sourced by a component shell script. The Perl generic component
(10.3.2) is a Perl object class which can be subclassed to create a component instance.

10.3.1 Shell Bindings

The ngeneric (B.39) script provides support for components written in Shell script.
Components should simply sourcengeneric which provides a number of useful shell
functions as well as default code for all standard methods.

ngeneric defines aDispatch() function which should be called with the command-
line arguments. This parses the common options and calls the appropriate method. The
absolute minimal component script is therefore2:

#!/bin/bash
. /usr/lib/lcfg/components/ngeneric
Dispatch "$@"

This will support all the standard methods and options, perform locking, logging and load
the component resources. To add application-specific functionality, it is simply necessary
to override some of the default methods:

For a methodfoo, Dispatch() calls the Shell functionMethod Foo() . This performs
some generic operations before calling the functionFoo() which is normally defined
to be empty. Component scripts simply redefine the functionFoo() for any methods
that they wish to support. The functionMethod Foo() can also be redefined in special
cases, although this is discouraged, because it is likely to change the standard method

2Note that ngeneric uses somebash features, and components should normally specify#!/bin/bash
explicitly.

(82) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.3. The Component Framework

semantics. The generic operations include the locking, loading of resources and some
error checking. This means that, when the user function is called, the LCFG resources are
usually available as environment variables, and the standard options have already been
parsed. For example, the component could redefine theStart() function as follows:

Start() {
Info "Starting my component"
Info "My arguments are $*"
Info "My server resource is $LCFG foo server"
Info "The verbose flag is $_VERBOSE"

}

Note:

❑ TheInfo() function is a standard function for displaying informational messages.
Functions such as this should always be used, rather than simply “echoing” mes-
sages (which does not work! see10.3.5).

❑ The arguments are those supplied on the command line, following the method
name, when calling the component (after removal of any generic options). These
component-specific arguments can be used for any purpose.

❑ The names of the environment variables used to hold the resources are determined
by qxprof (C.4).

❑ The exact operations performed before calling the user function depend on the
method. These are described in detail in thelcfg-ngeneric manual page (B.39).

❑ The standard options are available as environment variables (see10.3.8).

The ngeneric component also includes a number of other utility functions which are
described in section10.3.4. The manual page (B.39) provides futher details on available
variables and functions. The source code forlcfg-ngeneric is also quite simple to
read, andlcfg-example (B.16) provides a complete simple example.

10.3.2 Perl Bindings

The Perl moduleLCFG::Component (F.1) provides a superclass which can be inher-
ited to create pure-Perl components. This module provides all the functionality of of
thengeneric shell functions, including methods, utility functions, and variables. The
corresponding minimal Perl component is:

package LCFG:: Foo;
@ISA = qw(LCFG::Component);
use LCFG::Component;
new LCFG:: Foo() -> Dispatch();

The Complete Guide to LCFG (83)

The Complete Guide to LCFG Paul Anderson

The component methods are Perl member functions, and the resources are passed as Perl
data hashes. A simple user-definedStart() function might look like:

sub Start($$@) {
my $self = shift;
my $res = shift;
my @args = @_;
$self->Info("Starting my component");
$self->Info("My arguments are ".join(’ ’,@args));
$self->Info("My server resource is ".

$res->{’server’}->{VALUE});
$self->Info("The verbose flag is ".$self->{_VERBOSE});

}

Note:

❑ The methods, as well as the utility functions are Perl object methods.

❑ The resource hash contains resource meta-information as well as values.
SeeLCFG::Template (F.4) for details of the format.

❑ The standard options are available as member variables (10.3.8).

TheLCFG::Component module includes similar utility functions (10.3.4) tongeneric ,
as well as the I/O handling functions (10.3.5), and some additional routines for supporting
LCFG components which are intended to run as daemons (10.3.12).

The lcfg-perlex (B.44) component is a simple example of a Perl component.

10.3.3 The Template Processor

The template processor is a very powerful utility for creating configuration files by substi-
tuting LCFG resource values into template variables. It supports conditionals and iteration
based on LCFG resource lists. This utility is well-worth studying because it can be used
to create most configuration files very easily, with no additional code.

The command-line utilitysxprof (C.7) is based on the Perl moduleLCFG::Template
(F.4) so identical template files can be processed either from Perl, or from the shell. Typ-
ically, sxprof would be called to read a template and substitute the values of LCFG
resources, creating a new configuration file. The values of the resources would usually
be obtained from the environment (where they are placed automatically by the generic
component):

sxprof -i component template outfile

(84) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.3. The Component Framework

The format of the templates is best illustrated with some examples – the most basic usage
is the substitution of a simple resource value; for example to create a sendmail.cf file and
substitute the value of the mail relay from the LCFGrelay resource:

...
DH<%relay%>
...

Iteration over LCFG lists is supported automatically, so that multiple lines can be gener-
ated for list resources such as:

fstab.partitions hda1 hda2
fstab.mnt_hda1 /
fstab.args_hda1 ext2 defaults 1 0
fstab.mnt_hda2 swap
fstab.args_hda2 swap defaults

Using the template:

<%for: item=<%partitions%>%><%\%>
/dev/<%item%> <%mnt_<%item%>%> <%args_<%item%>%>
<%end:%><%%>

Yeilds:

/dev/hda1 / ext2 defaults 1 0
/dev/hda2 swap swap defaults

Note that the syntax can appear complex, but this is largely due to the rather obscure
delimiters3 and the evaluation process is really quite straightforward. For example, during
the first iteration of the above loop, the variableitem is assigned to the value of the first
tag from the list resourcepartitions (ie. hda1). The second field of the fstab is set
to <%mnt_<%item%>%>which evaluates to<%mnt_hda1%>and henceswap.

Notice that the exact character sequence (including newlines) appearing outside the<%
and%>characters is copied to the output. Hence the use of the<%\%>symbols which
are used to prevent unwanted newlines appearing in the output.

The template processor also supports:

❑ File inclusion (<%include:%>).

❑ Conditionals on the value (<%if:%>) or the existence (<%ifdef:%>) of a re-
source.

3The delimiters can be changed with command line arguments, but the default is deliberately rather
obscure to reduce the change of misinterpreting any characters which are are literal part of the template file.

The Complete Guide to LCFG (85)

The Complete Guide to LCFG Paul Anderson

❑ Evaluation of arbitrary shell (<%shell:%>) or Perl (<%perl:%>) expressions
and the substitution of their output.

❑ Arbitrary variables which can be set from the command line or the results of evalu-
ating some other expression.

❑ Insertion of resource derivations as well as values (<%#variable%>) – this is useful
for comments in the generated file.

❑ Comments in the template which are not copied to the generated file (<%/*%>...<%*/%>).

See theLCFG::Template man page (F.4) for details.

✏ Note that, when evaluating conditionals, the empty string is consideredfalse and
all other values (even0) are considered true. This is consistent with the LCFG client’s
treatment of resources which are declared as boolean; the client maps any representation
of false onto a null string so that it may be tested more easily with the shelltest
function.

The return status fromsxprof also indicates whether the resulting output file has been
changed by the substitution. This is very useful in components which manage daemons,
since the daemon may need to be notified (or even restarted) when the configuration
changes:

sxprof -i foo template output
status=$?;
[$status = 2] && LogMessage "configuration changed"
[$status = 1] && Fail "failed to substitute template"

A similar process can be used to automatically create command line arguments for a
daemon, and force a restart if they have changed:

sxprof -i foo - argfile <<EOF
<%if: <%debug%>%> -D ’<%debug%>’<%end:%><%%>
<%if: <%verbose%>%> -v<%end:%><%%>
<%if: <%xmldir%>%> -x ’<%xmldir%>’<%end:%>
EOF
if daemon is running ...

if [$? = 2]; then
stop daemon
daemon ‘cat argfile‘

fi
fi

If changes to certain parts of the template are insignificant (for example, comments), the
text can be included inside the delimiters<%{%>and<%}%>. This will prevent changes
to this text from causing a return status of 2, and leading to an unnecessary notification of
the daemon.

(86) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.3. The Component Framework

10.3.4 Utility Functions

The following utility functions are provided:

Do()
The arguments to this function are executed as a shell command. If the debugging
option(-D) is set, the command is also printed as a debug message. If the dummy
option(-d) is set, the command is printed without being executed.

IsStarted()
Returns true if the component is currently started.

RequestReboot()
Sets a flag in the status display indicating that the node requires a manual reboot.

ClearReboot()
Clears the reboot flag.

SetPwrCycle()
Sets a flag in the status display indicating that a power shutdown has been sched-

uled.

ClearPwrCycle()
Clears the power shutdown flag.

SaveStatus()
Save resources from the environment to the status file.

LoadStatus()
Load resources from the status file into the environment.

LoadProfile()
Load resources from the profile into the environment.

Lock()
Locks the component (blocking).

Unlock()
Unlocks the component.

SaveStatus() is automatically called by the generic component after successful com-
pletion of a configure method to save the configured resources. These resources are auto-
matically loaded again (usingLoadStatus()) at the start of methods such asrun so
that the resources in the environment represent the values that are currently configured –
these will be different from those in the profile if a previous configure operation failed.

Lock() , Unlock() andLoadProfile() are also called by the generic component
and do not normally need calling explicitly.

The Complete Guide to LCFG (87)

The Complete Guide to LCFG Paul Anderson

10.3.5 Component Output

Component scripts often run at boot time, or other times when error messages may go
unnoticed, and verbose output might obscure other important messages. Components
should restrict output to a few well-defined messages, written to stderr, ; more verbose
information should be written to the log file. Messages should only be generated on
stdout when that is the purpose of the method; for examplelog , or status .

At boot time, messages should be formatted to conform to the standard system boot mes-
sage format.

The following functions are provided to support component output:

OK()
This is called automatically by thengeneric script on successful completion of
a method.

Fail()
The component should call this function with an error message to abort the method.
The failure is notified to the server for indication on the status display and logged
in the log file.

Error()
The component should call this function with an error message. The error is noti-
fied to the server for indication on the status display and logged in the log file.

Warn()
The component should call this function to print a warning message. The warning
is notified to the server for indication on the status display, and logged in the log
file.

Info()
The component should call this function to print an informational message, usually
only when requested with a verbose option. The message is also logged in the log
file.

LogMessage()
The component should call this function to print a message to the log file.

Debug()
The component should call this function to print a debug message, usually only

when requested with a debug option.

StartProgress()
The component should call this function to print a message which is to be followed

by aprogress indicator. The functionProgress() should be called at intervals to
advance the indicator, and the functionEndProgress() should be called when
the operation is complete.

(88) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.3. The Component Framework

The following example shows the recommended way of handling long error messages,
and debugging messages, so that they do not clutter the display. The environment vari-
ables for the standard options are described in section10.3.8. The verbose option can also
be enabled by holding down the shift key when the component method is called4.

[-n "$_DEBUG"] && Debug "Debug message"
if [-n "$_VERBOSE"] ; then

Error "A long error message"
else

Error "Short message (see logfile)"
LogMessage "A long error message"

fi

The above functions support the fancy formats used by Redhat during startup. Newlines
embedded in arguments are handled correctly. The C librarylcfgutils (G.1) pro-
vides access to these functions from C, allowing them to be called directly from C helper
programs.

The generic component redirects the standard output and error descriptors to the logfile, so
all messages not produced by the above functions will appear in the logfile. If a component
needs to print to the standard output, or error (for example as part of astatus or log
method) then the descriptors 11 and 12 can be used:

cat mylogfile >&11

Command return status should be checked andFail() called to abort the component
when necessary.

10.3.6 Handling Logfiles

The generic component defines the variable$_LOGFILE to be the name of the standard
component log file. Standard output and error descriptors are redirected to the logfile,
so that the component may simply write to stdout to append messages to the logfile.
The functionLogMessage() generates timestamped and formatted messages which
are usually preferable.

Sometimes a component may require several logfiles for different purposes, and they
should be named by adding extensions to the standard log file name; this makes the logfile
visible (when permitted) by thelogserver component (B.34), and allows the logfiles
to be easily rotated using the standard logrotation files.

Logfiles with the standard extensions.err and.warn are created automatically by the
LCFG event routines. These files contain any error and warning messages generated by
the component, and their presence is detected by the status reporting system and used to
display error and warning icons on the status display. These files are deleted only by the

4Not currently implemented under Solaris.

The Complete Guide to LCFG (89)

The Complete Guide to LCFG Paul Anderson

Reset() method (or a reboot), so that error messages are not removed until they are
manually acknowledged.

The genericConfigure() method creates alogrotate (seeman logrotate) file
to cycle the logfiles at various intervals. The logrotate file is created by passing a default
template through the template processor. This allows resources to be used to customize
the log rotation:

ng extralogs
A list of extensions for any additional logfiles to be rotated.

ng logrotate
A list of tags representing additional lines to be inserted in the logrotate file.

ng logrotate tag
The logrotate line corresponding totag.

If even more control over the log rotation is required, the component may include a custom
template in:

/usr/lib/lcfg/conf/ component /logrotate

The standard logrotation file calls thelogrotate method on the component after the
logfiles have been rotated. This can be used where necessary to force daemons to close
and re-open their logfiles.

10.3.7 Monitoring

The component framework provides a number of hooks for interfacing an external moni-
toring system:

If the resourceng monitor is set to a full pathname, then copies of all events (eg. errors)
and monitoring information will be sent to the named file. Typically, this file may be a
named pipe, allowing a monitoring daemon to collate the information.

If the resourceng syslog is set to the name of a syslog facility, then all monitoring and
events will be written to the named facility.

Some events (eg. errors) are generated in response to normal method calls. TheMonitor()
method is intended to be used by the monitoring system to solicit specific monitoring in-
formation from a component. The first argument should be an identifier representing the
type of monitoring information required, and the component should respond by calling
theNotify() function with the requested information. For example, themailng com-
ponent (B.36) supports aMonitor() method which reports the existence (or not) of the
sendmail daemon process to the monitoring system. The monitoring system would be
expected to poll this method at intervals to monitor the status of the daemon.

(90) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.3. The Component Framework

10.3.8 Option Processing

The generic component parses the standard options (6.3) and makes them available in the
following variables:

$ DUMMY (-d)
The component actions are printed but not executed.

$ DEBUG (-D)
Print debugging information.

$ NOSTRICT (-n)
Certain warning and error messages are supressed. For example, trying to stop a

component which is not started will normally generate a warning message. If this
option is used, the warning is not generated.

$ QUIET (-q)
No messages are printed.

$ TIMEOUT (-t)
Normally, if a component is already executing, calls to most methods will block

until the existing instance terminates and releases the lock. This option specifies
a timeout so that the current call will terminate aftertimeoutseconds if the lock
cannot be obtained. Certain method calls do not lock (see the list above), and locks
can be broken using theunlock method.

$ VERBOSE (-v)
Additional messages are printed. Note that holding down the shift key when a

component method starts executing will also enable this option. This is useful at
boot time to enable more verbose logging on certain components.

Component methods must parse any method-specific options explicitly. For example:

Run() {
while getopts ":x:y" arg ; do

case $arg in
’x’) Info "option x is $OPTARG" ;;
’y’) Info "option y specified" ;;
’?’) Fail "bad option ($OPTARG)" ;;

esac
done
...

}

The Complete Guide to LCFG (91)

The Complete Guide to LCFG Paul Anderson

10.3.9 Standard Variables

The generic components provide a number of other standard variables:

$ COMP
The component name.

$ LOCKDIR
The lock directory name (10.3.10).

$ LOGFILE
The logfile name (10.3.6).

$ OKMSG
The generic components print the message given by this variable on sucessful com-
pletion of a method. This can be modified to add small amounts of extra information
(but should not be used for long messages!). For example, thedivine component
shows the current scheme when it starts by setting:

OKMSG="$OKMSG ($scheme)"

$ ROTATEDIR
The directory for log rotate files (10.3.6).

$ RUNFILE
The run file. This file is created as a marker to indictae that the component his

staretd.

$ STATUSFILE
The status file name. This contains the values of the resources set at the last sucess-
ful reconfiguration.

10.3.10 Component Locking

By default, the generic component assumes that most methods are not re-entrant and a
per-component lock is established which blocks method calls if some other method is
currently executing. Section6.1 lists those methods which are not subject to locking by
default.

The functionsLock() andUnlock() call the programlcfglock (C.1) to make and
release the locks. User-supplied method code can call these functions to lock custom
methods, or methods which do not normally lock by default. By (conditionally) calling
Unlock() beforeDispatch() is is possible to disable the default locking of the stan-
dard methods, although this is not recommended – the caller should use the-t option, or
call theunlock method to break existing locks.

The variable$_TIMEOUTis set from the generic-t option. This can also be set explicitly
by component code to define a default lock timeout.

(92) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.3. The Component Framework

The variable$_LOCKDIR is set to the name of the directory used to hold the lockfiles.
Careful manipulation of this can be used to create per-method, rather than per-component,
locks by using different directories for different methods.

10.3.11 The Configure Method

Theconfigure method is the most important method; it is called whenever the compo-
nent resources are changed. The component script should update the configuration files
to reflect the new resource values. If any daemons are currently running, then the compo-
nent should perform whatever operations are necessary for the daemons to recognise the
updated configuration.

Theexample component (B.16) shows a typicalconfigure method:

Configure() {
Use sxprof to create the config file:
/usr/bin/sxprof -i $_COMP template config-file
status=$?
Check status
[$status = 1] && Fail "sxprof failed (see logfile)"
Return if no change
[$status = 2] || return
Check if the daemon is running.
If so notify it of any changes (if necessary)
LogMessage "configuration changed"
...

}

A resource may change for several reasons, including a change to the specification on
the server, or a local change of context (5.2.5). The node may not even be connected
to the network at the time the change occurs, and the component should not need to be
concerned with the reason for a particular change.

✏ Note that immediate update of configuration changes is not always practical and the
component must decide whether certain changes should be deferred; for example, if a
user is currently logged on to the console, thekdm component will defer updates which
involve restarting the daemon until the user had logged out. Some changes can still be
difficult to schedule; for example, changes to disk partition sizes will not normally be
implemented until a rebuild operation is initiated manually.

Two standard resources (10.4.7) are interpreted by the client component to determine
when to call a component’sconfigure method:

ng cfdepend
This resource is interpreted by the LCFG server (and ultimately, by the client).
It is used to determine which components should be reconfigured when resources
change. The resource should include a list of dependencies of the form>component

The Complete Guide to LCFG (93)

The Complete Guide to LCFG Paul Anderson

or <component. In the first case, the specifiedcomponentwill be reconfigured
whenever the resources of this component change. In the second case, this com-
ponent will be reconfigured whenever the resources of the specifiedcomponent
change. Normally, this resources will be set to<self so that the component’s
configure method is called whenever it’s own resources change.

ng cforder
This resource is interpreted by the LCFG server. It is used to generate theclient.components
resource which specifies the order in which components should be reconfigured
after a configuration change.ng cforder specifies a list of constraints on the
the order in which the components are reconfigured. A constraint of the form
>componentmeans that this component must be configured aftercomponent. Sim-
ilarly, <componentmeans that this component must be configured beforecompo-
nent. A runtime error will occur if the constraints specify a loop.

10.3.12 Managing External Daemons

In addition to creating configuration files, many components also manage one or more
daemons. This is not essential – daemons can simply be started and stopped using the
normal System V “init” files, and the LCFG boot component (6.4.3) will manage the
lifecycle for a mixture of init files and LCFG components. However, using an LCFG
component to manage a daemon makes it easier to notify the daemon when the configura-
tion changes, and to set command line options from LCFG resources. It is often possible
to create an init script (or use an existing one) and just call this from the LCFG component
methods:

Start { /etc/rc.d/init.d/ foo start }
Stop { /etc/rc.d/init.d/ foo stop }

Typically, the Configure() method would simply callStop() and Start() to
restart the daemon whenever the configuration changed.

✏ In a normal LCFG installation, the boot component controls which init files and which
components should be started. In the above example, the boot component would be con-
figured not to start the init file itself, but to start the component instead (which would then
start the init file).

If there is no existing init file, or a more complex startup process is required, it may be
more convenient to simply stop and start the daemon directly from the LCFG component.
The shell generic component provides aDaemon function to perform some IO redirec-
tion and other preliminaries before forking a background process. The component will
probably want to store the process id so that it can be located later to stop or notify the
daemon:

(94) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.3. The Component Framework

Start {
Daemon "foo ‘cat argfile‘ 2>/dev/null"
client_pid=$!
[-z "$_DUMMY" -a -z "$client_pid"] && \

Fail "failed to start foo (see logfile)"
echo $client_pid >$PIDFILE

}

Stop {
client_pid=‘cat $PIDFILE 2>/dev/null‘

[-n "$client_pid"] && [-e /proc/$client_pid] && \
Do "kill -INT $client_pid"

rm -f $PIDFILE
}

Since theConfigure() method is called as part of the genericStart() method,
command line arguments can be constructed (from the resources) in theConfigure()
method, as shown in section (10.3.3). This allows theStart() method to simply retrieve
them from theargfile , as shown above.

✏ After starting, or stopping a daemon, it is highly recommended to check that the oper-
ation has been sucessful before exiting the method. This might involve, for example, a de-
lay loop which polls for the existence of a process after sending it a termination interrupt.
The standardsendmail init files, for example, sometimes exit before thesendmail
process has actually terminated. Immediately calling a subsequentinit start (as one
might do in aConfigure() or Restart() method) will fail intermittently because
there is already asendmail process running. TheStop() method of themailng
component (B.36) is a good example of how to handle this situation correctly.

✏ Starting daemons correctly and detecting errors is harder because the daemon may
fail asynchronously after it has apparently started sucessfully. It is sometimes useful to
sleep for a short time after starting a daemon before checking that it is still running; this
helps to detect any obvious failures that might occur during daemon startup. Subsequent
failures can only be detected by regular polling, perhaps using theMonitor() or Run()
methods, called fromcron to check the health of the daemon and report or correct any
failures.

It is important to make a distinction between a component being “started” and the corre-
sponding daemon being “started”. The component is considered started after a sucessfull
call to theStart() method, and before a sucessful call the theStop() method. This is
the status reported by theIsStarted() function. In a simple case, such as that shown
above, this would correspond to the daemon being started (unless it had unexpectedly
failed). However, consider the case where a running daemon is an optional feature of
the component, so that a daemon is only run if a particular resource is set (themailng
component (B.36) is an example of this): in this case, the component must be prepared
to stop and start the daemon in theConfigure() method if the enabling resources are
changed. The component may now be “started”, although the daemon is not running. It is

The Complete Guide to LCFG (95)

The Complete Guide to LCFG Paul Anderson

generally worth taking some care to ensure that both the component and the daemon are
in the expected state before attempting to perform any operation such as a restart.

The standard output (and error) channels from the component (and hence the daemon)
are redirected to the logfile, so all daemon messages will appear there. However, error
messages from the daemon will simply appear in the logfile without generating LCFG
error events; ie. the errors will not appear on the LCFG status display. If the daemon
source code can be modified, then explicit LCFG event routines can be adding, using the
lcfgutils C library (G.1).

If the source code cannot be modified, but the daemon reports error messages to a unique
syslog facility, then it should be possible to configure thesyslog.conf file (B.56) to
append error messages on that facility directly to the end of the component error log file
(10.3.6). In this case, the errors would appear on the status display, but the notification
would not be immediate; it would only occur at the regular client heartbeat, or when some
other event occured.

10.3.13 Writing Daemons in Perl

The Perl generic component (10.3.2) can be used to create components without daemons,
or components which manage external daemons, as described above. However, it also pro-
vides support for writing components which are themselves daemons; ie. the component
process forks in theStart() method to leave a copy running in the background (both
of these alternatives are ilustrated in the Perl examplelcfg-perlex (B.44)). This has
the advantage of providing a much tighter coupling between the running daemon and the
LCFG framework; for example, configuration changes are notified directly to the running
daemon which can usually handle most changes “on the fly” without requiring a restart.
The process is as follows:

❑ TheStart() method should perform any initialization and then callStartDaemon()
which forks. The parent copy returns, and hence exits theStart() method. The
child calls the user-suppliedDaemonStart() function which forms the main
loop of the daemon.

❑ TheStop() method should callStopDaemon() . This signals the running dae-
mon process and automaticlly calls the user-suppliedDaemonStop() function
which is responsible for terminating the main loop of the daemon and exiting.

❑ The Configure method should callConfigureDaemon() . This signals the
running daemon process and automatically calls the user-suppliedDaemonConfigure()
method. The new values of the resources are read into the daemon process automat-
ically and provided toDaemonConfigure() as arguments. In many cases, the
daemon process can simply store the resources in global variables, or perform some
simple reconfiguration which allows it adoprt the new values without restarting.

❑ All the standard utility functions are available to the daemon process so that error
reporting and other logging can use the standard functions, and events are reporetd
imediately to the server.

(96) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.4. Default Files

10.4 Default Files

Every LCFG component requires a “default” file (5.1.2) file to define the schema for the
resources. This provides:

❑ Information on on the structure of any list resources (10.4.4).

❑ Validation predicates (“types”) for resource values (10.4.2,10.4.3).

❑ Default values for resources.

The Dice Guidelinesdocument describes how the default files should be packaged and
where they need to be installed.

10.4.1 Simple Resources

Simple resources are declared by specifying their name and default value. For example:

ipaddr 129.215.65.78

The resource is assumed to be of typestring and no validation is performed when the
resource is compiled.

10.4.2 Builtin Types

Resources may have a type specified. In this case, the resource values are validated at
compile time, and in some cases, transformed into a canonical representation. The types
currently supported are:

integer
Validated as an integer.

boolean
Validated as a boolean, with several values (eg.yes andno) being accepted and
transformed into the canonicaltrue or false . The client translates these values
into non-null and null strings so that they can be tested easily from shell scripts.

string
This is equivalent to having no type specification, except when it is qualified with a
validator (10.4.3).

Type specification have the form:

@name %type

The Complete Guide to LCFG (97)

The Complete Guide to LCFG Paul Anderson

vENUM(L) The value is a member of the token listL.
vINFILE(F) The value matches a line in the fileF.
vIPADDR The value is a valid IP address.
vIPADDRLIST The value is a (space-separated) list of valid IP addresses.
vHOSTNAME The value is hostname present in the DNS at the time of

complication. Note that this will not automatically be re-
validated if the DNS is subsequently changed.

vHOSTLIST A (space-separated) list of valid hostnames.
vURL A URL.

Figure 10.1: Standard validation macros

For example:

@debug %boolean
debug yes
@interval %integer
interval 10

Note that a default value for every resource must still appear, even if it is null, and it has
a type definition.

10.4.3 String Validation

Arbitrary validation code may be specified forstring resources. For example:

@url %string(http url): /ˆhttp:/
url http://www.lcfg.org

The name in brackets is printed as part of an error message if the value does not satisfy
the validation predicate. Care is required in creating validation code, since this allows
arbitrary code to be executed in the context of the compiler – this is executed inside a Perl
“Safe” module, but infinite loops will still block the entire compiler. It is recommended
that the macros supplied in the filevalidate.h (A.2) are used whenever possible (see
figure10.1). Some of these macros also make use of internal server functions to provide
more complex validation (for example, a hostname which is valid in the DNS).

10.4.4 Lists

The LCFGlist resource type supports nested lists of records. The notation for describing
resource lists is unfortunately rather awkward. This is a consequence of evolution from
the simple list markup convention used in the original LCFG implementation. A list
declaration is used to enumerate all the resources which belong to the list and locate their

(98) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.4. Default Files

(possibly default) values. The list appears in the XML profile as a nested structure and
the declaration is used again at the client end to re-serialise the list into key-value pairs so
that it can be accessed as shell variables by a shell component.

A list is declared by specifying the field names that appear in the records (each list element
is one of these records). For example, the following declaration specifies a list of records
where each record contains two fields:

@devices dev_$ perms_$

Defaults should also be provided for each field when a list item does not specify values:

dev_$ /dev/null
perms_$ 0644

An instance of this list might then be defined as:

foo.devices knife fork
foo.dev_knife /dev/knife2
foo.perms_knife 0655
foo.dev_fork /dev/fork
foo.perms_fork 0600

The values appearing in thedevices resource are known astagswhich act as unique
identifiers for the list elements.

Several different conventions have been used for specifying multi-level lists and all of the
known conventions are supported. For example, where the second-level resource keys
contain only a single tag:

@disks dopartition_$ partitions_$
disks
dopartition_$
@partitions_$ pdetails_$
partitions_$
pdetails_$

Or where the second-level resource keys contain the tags from both levels:

@modules entries_$
modules
@entries_$ entry_$_$
entries_$
entry_$_$

The Complete Guide to LCFG (99)

The Complete Guide to LCFG Paul Anderson

Some old components do not provide an explicit tag list; they assume an implicit tag list
of 1..N whereN+1 is the lowest integer for which no matching resource exists. This is not
recommended, but it can be simulated for compatibility by specifying a# in the tag list.
For example:

@rules rule_$
rules foo #
rule_foo R1
rule_1 R2
rule_2 R3
rule_4 R4

This would generate resources corresponding to an implicit tag list of:

foo 1 2

Notice thatrule 3 is ignored. There is a limit of 100 on these ennumerated tags.

10.4.5 List Sorting

Very often, the value of a list resource is not fully specified in a single file; it is built up
from declarations spread across several header files, representing different aspects. For
example, the list of components which is started at boot time is usually defined by the
resourceboot.services . The basic site header file normally defines a default list of
services, but optional header files will add5 other services, such as a web-service, or a
database service.

In some cases, such as the above, the (partial) order of the items in the list is important. If
the optional header files simply append items to the end of the list, then the order depends
on the ordering of the header files, and this can be very error prone.

The LCFG compiler provides a mechanism to have the items of a list automatically sorted
according to precedence constraints. For example:

boot.services a b c d e f
boot.order_a >c >d <e
boot.order_c >d

Theboot.services list will be (topologically) sorted so thata comes (not necessarily
immediately) afterc and afterd, before beforee. c will also come afterd. The order
of unconstrained items in the sorted list is not defined6 , although some attempt is made
to observe the order of the original list. Clearly, it is possible to specify contradictory
constraints and this will generate a compile-time error.

5using “mutation” – see5.2.4
6The order does vary between versions of the Perl compiler.

(100) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.4. Default Files

The resources containing the ordering constraints must be specified in the definition of
the list resource. As well as specifying resources of the current component, it is also
possible to specify that the ordering resource comes from some other component; this
is very useful in cases such as the boot example, because additional components can be
added and their ordering constraints can be included in their own default file without any
changes to the header files, or the boot defaults. For example:

@boot.services foo_$ order_$; order_$ $.bootorder

In this case, the ordering constraints for the componentb can be specified either in
boot.order_b or in b.bootorder (or both).

It may occasionally be useful for the component to know the explicit ordering constraints
for the items, as well as the sorted list. This would be necessary, for example, for the
boot component to determine whether certain services could be started in parallel. The
compiler can store the final constraints in specified resources. For example:

@boot.services order_$ after_$ before_$ \
; order_$ >after_$ <before_$

This definition will cause the compiler to generate resources such asafter_a which
contains the list of items which must come aftera, andbefore_a which contains the
list of items which must come beforea. If this definition was used with the resource
values above, then the following values would be generated:

after_a = e
before_a = c d
after_c = a
before_c = d
after_d = a c
before_e = a

10.4.6 Spanning Maps

Four types of configuration file are involved in the creation of a spanning map (5.2.7); the
subscriber and publisher source files (created by the user) and the subscriber and publisher
default files (created by the component authors). This is best illustrated by an example:

❑ The default file for the dchp client component specifies which resources are to be
exported:

name
mac
...
@map %publish: name mac
map

The Complete Guide to LCFG (101)

The Complete Guide to LCFG Paul Anderson

This specifies that the resourcesname andmac are to be published to the spanning
map whose name is given by themap resource.

❑ The dhcp client source files specify only the map name to which the resources
should be published (and of course, the values of the resources themselves):

name foo
mac 1.2.3.4.5.6
...
map dhcp/cluster27

❑ The dhcp server default file specifies the name of a list resource into which the map
entries will be imported. The fields of the list resource should correspond to the
resource names which will be published to the map:

@clients name_$ mac_$
clients
name_$
mac_$
...
@map %subscribe: clients
map

This specifies that a list of all the clients publishing to the map named in themap
resource should be generated and stored in theclients resource . For each
client, the values of thename_clientandmac_clientare generated from the values
of the corresponding client resources.

❑ The dhcp server source file specifies only the map to subscribe:

map dhcp/cluster27

The result of this, is that theclients resource in the server profile will include the data
from all the clients which have published to the specified map. The list tags are the node
names of the clients. This is equivalent to having manually created the following:

clients client1 client2 ...
name_client1 foo
mac_client1 1.2.3.4.5.6
name_client2 bar
mac_client2 6.5.4.3.2.1
...

(102) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.4. Default Files

If any of the published resources in a node are changed, all nodes which subscribe to the
map are recompiled automatically. A node may publish and subscribe to the same map.

Resources of type%publish and%subscribe may list multiple maps allowing re-
sources to be exported and imported from several different maps. The same resources
can be exported by several different%publish resources, and it is possible to export a
resource with a different name. Eg:

@map %publish: name ether=mac

Will export the value of the resourcemac with the nameether .

Resources from different components can be published to the same map, as long as the
field names of the subscribe resource include the names of all the published resources.
(References can also be used to collate values from multiple components).

If a list resource is published, only the one resource containing the tag names is exported;
the sub-resouces of the list are not automatically exported7. Cross-domain spanning maps
require unique (short) node names for the publishers because the short names are used as
the list tags in imported map.

10.4.7 Common Resources

In addition to the application-specific component resources, most components will want
to include the following:

#include "ngeneric-1.def"
#include "om-1.def"

❑ Thengeneric resources are described in thelcfg-ngeneric man page (B.39).
These resources are interpreted by various parts of the LCFG system itself, and con-
trol logfile rotation (10.3.6), configuration dependencies (10.3.11), monitoring and
status behaviour (10.3.7), and some other options.

❑ Theomresources are interpreted byom(6.2), mainly for authorization.

❑ Components should also include aschema resource specifying the version of the
schema which they require.

10.4.8 Extending Existing Schema

Since the default file is passed through the C preprocessor, it is possible to extend existing
component schema by including the default files of those components. Overrides and
mutation (5.2.4) are available so that the inherited resources can be changed if required.
For example, thengeneric resources for logrotation can be extended:

7This is a restriction that we would like to remove.

The Complete Guide to LCFG (103)

The Complete Guide to LCFG Paul Anderson

!ng_logrotate mEXTRA(tr)
ng_logrotate_tr copytruncate

It is even possible to mutate the type defined by an included component to add additional
fields to a list record, or to add additonal validation; the following example creates a local
version of theclient schema which adds additional validation to the server URL:

#include "client-2.def"
!schema mSET(local-2)
!@url mSET(%string(interval): /ˆhttp:foo.com/)

Note that the header files containing the macros for mutation and validation (for example,
themEXTRA) should be included explicitly if they are required:

#include "mutate.h"
#include "validate.h"

10.4.9 Pseudo-Nodes

Sometimes it is useful to create sources files which do not represent “real” nodes. These
source files can useful as either publishers or subscribers to spanning maps. For example:

❑ An inventory source file could be used to collate all the inventory information
published by the real nodes. By default, the inventory would be available as an
XML file, but plugin modules (9.3) could be used to generate this in a different
format if required.

❑ Source files could be created for printers and the information needed by the print
servers could be published to a spanning map. The print servers would then sub-
scribe to the spanning map to get the list of printer names and attributes.

❑ As a combination of both, a pseudo-node could subscribe to the printer information
and feed the resources into LDAP using a plugin module.

10.5 Testing Components

LCFG components are simple scripts, and it should be possible to test them just by exe-
cuting the script with the appropriate method as an argument:

./ mycomponentstart

In practice, there are a number of problems:

(104) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.5. Testing Components

❑ Thengeneric component uses several logfiles and status files which require root
permission for writing. It is also probably not desirable to write to these live files
during testing.

❑ The resources are obtained from the profile of the current host. These resources
may not exist in the profile, or it may be necessary to use different values during
testing.

❑ It is likely that the component-specific code will also need to write to root-owned
configuration files, or make other changes to the live system.

❑ It is possible that the component will need to start daemons or perform other actions
requiring system priviledges that would be undesirable on the live system during
testing.

LCFG provides support for all these cases:

10.5.1 Test-time status files

If the current directory contains a file calledtest.mk , the buildtools will automatically
define the variables@TESTSHELLV@and@TESTPERLV@. These variables contain re-
definitions for all the system status and log files used by the generic component. For shell
components, the variable should be included when sourcing thengeneric component:

@TESTSHELLV@ . @LCFGCOMP@/ngeneric

For Perl components the variable should be used when creating the component object:

new LCFG::PerlEx(@TESTPERLV@) -> Dispatch();

By default, the private files are created under a subdirectory calledTEST in the current
directory, however the pathnames for all the individual files can be changed by assigning
different values to the corresponding buildtoosl variables. The defaults are defined in
lcfg.mk and listed in appendixE.

The test.mk file is normally included in CVS for the module along with the other
source files. The buildtools will not package this file for distribution. This means that any
attempt to run the component in the working directory will use the test pathnames, but
packaged and distributde components will use the live pathnames.

10.5.2 Test-time resource values

If the buildtools variable@TESRES@is defined then it is assumed to be the full pathname
of a file containing resource values. When the filetest.mk exists, these values will
be used instead of any values obtained from the profile. The format of the resource file
should be suitable for reading withqxprof -r (this is the same format as generated by
qxprof -w).

Conventionally, the@TESTRES@variable is defined in thetest.mk file.

The Complete Guide to LCFG (105)

The Complete Guide to LCFG Paul Anderson

10.5.3 Test-time configuration files

Any buildtools variable definitions intest.mk will take precedence over definitions in
config.mk (or any of the standard buildtools symbol files). By defining names for
live configuration files inconfig.mk and corresponding test-time names intest.mk ,
components can be tested in the working directory without writing to the live files.

10.5.4 Test-time daemon execution

The buildtools define the variable@TESTING@when thetest.mk file is present. This
can be used in the component code to take different actions during testing. For example,
a debug message may be printed, rather than starting a a live daemon which requires root
priviledges.

TheDo() function (see section10.3.4) is also useful for testing; priviledged system op-
erations should be called using this function. For example:

Do "/etc/init.d/rc.d/sendmail start"

In normal operation, this will execute the specified command. However, if the component
is called with the-d option, then a debug message will simply be printed instead.

10.5.5 Test installation

At some point, it will be necessary to test the component in the live environment. The
buildtools targetdevrpm builds an RPM from the files in the working directory. This
RPM can be installed and tested on the current system before checking in the code and
build a production RPM. Test RPMs should never by shipped to production systems since
the code is not guaranteed to exist in the CVS.

If the nsu command is available, then the buildtools targetdevinst can be usde to
create the development RPM and install it on the current system with one command.

10.5.6 Summary

In summary, the following steps are recommended to simplify component testing:

❑ Write the component to include@TESTSHELLV@or @TESTPERLV@as above.

❑ Create a file containing resource values to be used during testing. Define@TESRES@
to be the name of this file.

❑ Define the names for system configuration files inconfig.mk and provide test-
time names for them intest.mk .

❑ UseDo() to execute any commands which require system priviledges, and test the
compoent by using the-d option.

(106) Revision 0.99.63: 06/01/05 14:10

Chapter 10. Writing Components 10.6. Packaging Components

❑ Use the buildtoolsdevinst target to install a test copy on the current live system.

10.6 Packaging Components

Components are normally created and packaged using thebuildtools (see11).

10.6.1 Reconfiguring on Component Upgrade

When a component is upgraded, there may be changes to a template, or the component
semantics which require a reconfiguration. This is normally achieved by using an RPM
post-install script in thespecfile :

%post
if [-x @LCFGCOMP@/@COMP@ -a \

-f @LCFGTMP@/@COMP@.run] ; then
echo reconfiguring @COMP@ component
/usr/sbin/daemon @LCFGBIN@/om @COMP@ configure -- -f

fi
exit 0

In most cases, theconfigure method will not restart a daemon (for example) unless the
resources have changed. However, in this case, we do want to force the daemon to restart,
since the daemon code may have been upgraded. The-f flag is not interpreted by the
framework in any way, but it is a convention which should be handled by theconfigure
method to force a complete reconfiguration, even if the resources have not changed. If the
configure method does not expect any other special flags, then the following code would
be typical:

while [-n "$1"] ; do
["$1" = "-f"] && _RESTART=1
shift

done
sxprof ...
[$? = 2] && _RESTART=1
[$_RESTART = 1] && Restart the daemon

Note that the configure method will run in the context of anrpm install. This requires
some care over the environment when restarting daemons; in particular, the use of the
daemon command as shown above.

The Complete Guide to LCFG (107)

The Complete Guide to LCFG Paul Anderson

10.7 Installing and Using a Component

Assuming that the component code has been created and packaged according to the“DICE
and LCFG Software Guidelines”[And01], the following steps are required to install and
use a newly created component:

❑ The component code must be installed on the client. The RPM could simply be
installed by hand, but normally the packages will be managed by LCFG. In this
case, the RPM should be placed in the repository, and the name of the RPM added
to theprofile.packages resources, usually by including it in the appropriate
rpmcfg file.

❑ The default file must be installed on the server. The standard build process creates a
separate RPM for the default file and this should be installed using the appropriate
process.

❑ Any clients using the component should specify the appropriate schema version:

profile.version_ component version

Usually this is included in some header file.

❑ The component should be added to the component list of the appropriate clients:

!profile.components mADD(component)

Usually this is included in some header file.

❑ If the component is to be staretd at boot time, it should be added to the boot list:

!boot.services mADD(lcfg component)

Notice thelcfg ! Some other boot resources may need setting (6.4.3) to control
the order and run levels.

(108) Revision 0.99.63: 06/01/05 14:10

Chapter 11

Buildtools

The modulelcfg-buildtools provides a set of makefile targets to assist with the
building and packaging of LCFG software from the CVS repository. These provide sup-
port for:

❑ Automatically incrementing version numbers and commiting new releases with the
appropriate tags.

❑ Automatically building RPMs or Solaris packages, both from specific CVS ver-
sions, or the working copy.

❑ Substituting build-time configuration variables into scripts, TeX documents, and
other files.

This chapter should be read in conjunction with the document “DICE and LCFG Soft-
ware Guidelines”[And01] which recommends guidelines for pathnames and packaging of
LCFG components.

AppendixI shows the files from thelcfg-example module.

11.1 Getting Started

It is suggested that a test module is created in a temporary local CVS directory for initial
familiarisation with lcfg-buildtools . It may be useful to use a module such as
lcfg-example as an initial template.

The module should supply a fileconfig.mk which defines the module-specific config-
uration variables for the package, typically including at least the following:

The Complete Guide to LCFG (109)

The Complete Guide to LCFG Paul Anderson

NAME=lcfg- module-name
DESCR=description
V=version
R=release
GROUP=LCFG/Components (for example)
AUTHOR=name <mail>
DATE=dd/mm/yy hh:mm:ss

The Makefile should includebuildtools.mk close to the start of the file (but following
the declaration of any default target):

include buildtools.mk

buildtools.mk includes theconfig.mk file, as well aslcfg.mk , os.mk and
site.mk which provide LCFG-, OS- and site-specific configuration variables. (see the
Software Guidelines document).

The module may also supply atest.mk file which provides values to override some
configuration variables during testing - for example to use library files from the current
directory, rather than the installed system location. This file is used when building the
package in the current directory, but it is not included or used when the package is ex-
ported.

All configuration variables defined in the above files are available for use in the Makefile.
These variables can also be substituted into other files at build-time (11.2).

11.2 Substitution

buildtools.mk provides the targetconfig.sh which creates a script to substitute
strings of the form@VAR@with the value of the variableVAR, for all configuration vari-
ables.

A generic rule is supplied to create any filefoo automatically from the filefoo.cin
by generating and applying config.sh. The CVS repository should normally contain the
.cin files, and the corresponding target files will be configured and generated when they
are referenced by the Makefile.

The targetconfig.tex creates a file of TeX definitions for all the configuration vari-
ables. This can be included in Tex documents using:

\input {config.tex }

The TeX variables are named\cfg name, wherenameis the lower case version of the
variable name.

(110) Revision 0.99.63: 06/01/05 14:10

Chapter 11. Buildtools 11.3. Creating New Releases

11.3 Creating New Releases

The following targets edit theconfig.mk to increment the appropriate component of
the version number (X.Y.Z) and then commit all files into CVS and tag them with the new
version tag.

release
bump theZ component (not the RPM release).

minorversion
bump theY component.

majorversion
bump theX component.

A record is also added to theChangeLog file (which must exist) to indicate the new
release, and theDATEvariable inconfig.mk is automatically updated.

11.4 Creating Distribution Tar Files

The targetpack creates a tar file from the version of the software in the CVS repository
corresponding to the version number in the currentconfig.mk . Apart fromconfig.mk ,
the working files in the current directoryare not used. The tar file is created in the standard
Linux SOURCE directory (determined by querying withrpm to take account of personal
rpm preferences).

Other versions can be packed by calling:

make V=some-version pack

The targetdevpack creates a development version of the tar file from the files in the
working directory. (This might not produce correct results if files have been removed or
added since creating the last release.)

The Makefile may define aprep (ordevprep) target which is called immediately before
packing the files into a tar archive. These targets can be used to delete or manipulate
files before packaging. The files are copied to a temporary directory before packing,
so any changes here will not affect the working directory or the CVS contents. These
targets should be followed by a double colon since default (null) targets are included
buildtools.mk .

11.5 Creating RPMS

The module should supply an RPM spec file calledspecfile . The targetsrpm and
devrpm will pack the appropriate sources, create a working specfile by substituting any

The Complete Guide to LCFG (111)

The Complete Guide to LCFG Paul Anderson

variables inspecfile using config.sh , and build the RPMs. The targetsspec
anddevspec will pack the sources and create the specfile without continuing to build
the RPM (this is useful is the RPM is to be build on a different platform). The target
devinst builds a development RPM and installs it on the current machine1.

The variableTARFILE is set to the name of the source tar file and should be used in the
specfile . The ChangeLog entry for thespecfile is automatically created from the
ChangeLog file.

The variablesPRODandDEVcan be used to prefix specfile lines which should appear only
in the production, or development versions of the RPM, respectively. These variables are
set to# or null as appropriate.

When creating development tar files and RPMs, the RPM release number will be incre-
mented for each new generation. This is not strictly in accordance with the DICE guide-
lines, but it provides a way to distinguish between the different versions which may be
generated rapidly during development and testing. (These RPMs are never released).

11.6 Creating Solaris Packages

The targetspkg anddevpkg can be used under Solaris to build Solaris packages instead
of Linux RPMs. The Solaris package is created automatically from the information in the
specfile by thepkgbuild program. This conversion is not perfect – for example,
dependency information is not converted, care is needed with any pre/post scripts, and
only simple specfile directives are processed (see section10.2for details). It is however,
sufficient for many cases.

The environment variable$PKG_BUILD_DIR can be used to specify the location of the
resulting packages.

11.7 Rebuilding RPMs

Copies ofbuildtools.mk , os.mk , site.mk and lcfg.mk are automatically in-
cluded with the SRPM and used during rebuilding. This prevents errors if the installed
version of these files does not match the version used when the module was packaged (or
if they do not even exist).

Any operation which requires software that may not be present on a foreign target system
may be best performed at build-time, rather than RPM rebuild time, if possible. For
example, modules which require specific latex packages to build the documentation can
create the PDF file at packaging time using theprep target. RPMs can then be rebuilt
without rebuilding the documentation.

1this requires that thensu command is available and provides the user with sufficient privileges to
perform the installation.

(112) Revision 0.99.63: 06/01/05 14:10

Chapter 11. Buildtools 11.8. Miscellaneous Targets

11.8 Miscellaneous Targets

❑ Any clean target supplied by the module Makefile should be followed by a double
colon, sincebuildtools.mk provides a default target to remove common files.

❑ A generic rule is provided to createlcfg- foo.$(MANSECT) or foo.$(MANSECT)
from foo.pod .

❑ Adding the following rule will cause a “make release” to fail if there are files in the
working copy that are out of date with respect to the repository:

uptodate:: checkcommitted

❑ Adding the following rule will force the ChangeLog file to be generated from the
repository contents:

changelog:: cvschangelog

11.9 Branches

Branches can be created as follows:

cvs tag -b branch_ module X Y Z branch
cvs update -r branch_ module X Y Z branch

Edit theconfig.mk to include:

BRANCH=branch

11.10 Environment Variables

A number of environment variables can be set to change the behaviour of thebuildtools.mk
makefile. These are mainly intended for use at other sites where the environment may be
different:

$REL PFX
The value of this environment variable is added as a prefix to RPM release numbers.
This should be used when building RPMs at other sites to indicate the environment
in which the RPMs were built (this may involve, for example different versions of
various libraries).

$INC DIR
The location oflcfg.mk , site.mk , os.mk , andbuildtools.mk if they are
not in the standard/usr/include location.

The Complete Guide to LCFG (113)

The Complete Guide to LCFG Paul Anderson

$CVS PFX
The prefix used when accessing CVS modules. This is necessary if the modules

are not located in the root directory of the CVS repository.

$PKGBUILD DIR
The temporary directory in which to build Solaris packages. The default is/var/tmp/pkgbuild .

(114) Revision 0.99.63: 06/01/05 14:10

Chapter 12

LCFG on Solaris

Although the LCFG core is relatively portable, many aspects of a complete system, such
as installation, and software updating are very dependent on the underlying operating
system. The current version of the LCFG core, and some standard components, run under
Solaris, and there are Solaris-specific alternatives for performing node installation and
software updating. However, the Solaris port is not so widely used as the standard Linux
distribution, and it is not likely to be so well supported.

12.1 Prerequisites

LCFG requires a number of utilities and Perl modules which are not part of the standard
Solaris distribution. Some of these are available as Solaris packages on the Freeware CD,
or from the Sun Freeware repository. Others can can be built from CPAN or distributed
tarballs using thecpan2pkg utility as follows:

➜ cpan2pkg modulename
or
➜ cpan2pkg --from-file filename

Copies of Solaris packages for all these prerequisites are available onlcfg.org .

The LCFG buildtools1 providepkg anddevpkg targets, analagous torpm anddevrpms ,
for creating Sun packages. The packages are generated using thepkgbuild program
which is described in the manual page. Note that it is necessary to use the GNUgmake
program, and that several non-default directories are required in thePATH. For example2:

➜ export PATH=/usr/sfw/bin:$PATH

➜ export PATH=/opt/sfw/bin:$PATH

➜ export PATH=/usr/ccs/bin:$PATH

➜ export PATH=/usr/perl5/5.6.1/bin:$PATH

➜ gmake pkg

1Available in the Sun packageLCFGbuild .
2The syntax of this example assumes that thebash shell is being used.

The Complete Guide to LCFG (115)

The Complete Guide to LCFG Paul Anderson

Packages can be added and removed manually using the standard Solaris utilities. For
example:

➜ gunzip LCFGexamp.pkg.gz

➜ pkgadd -d LCFGexamp.pkg LCFGexamp
...

➜ pkgrm LCFGexamp
...

12.2 Solaris-specific components

12.3 Package Management

12.4 Booting

12.5 Installation

Installation of new nodes under Solaris is performed using Solaris Jumpstart. Pre- and
post-install scripts (see appendixD) for the Jumpstart installation are used to retrieve the
LCFG profile from the server and generate the necessary parameters for the installation.

12.5.1 Jumpstart server configuration

Installation of LCFG clients via jumpstart requires a standard jumpstart server with the
following:

❑ Standard Solaris 9 packages in a suitable NFS exported directory, as described in
[Mic].

❑ The Sun Freeware packages in a suitable NFS exported directory.

❑ The LCFG package repository in a suitable NFS exported directory.

❑ An NFS-exported “root” filesystem containing a small set of unpacked LCFG pack-
ages and their prerequisites. This provides an image to be used by the client node
during the Jumpstart procedure, prior to LCFG being installed locally. Installa-
tion into the image directory can be accomplished by using the-R parameter to
pkgadd . Figure12.1lists the required packages:

❑ The root directory must also contain thecpp , gunzip and tsort programs.
These are not available as part of the core Solaris packages but are required dur-
ing installation, so they must be copied from the server’s filesystem into the bin
directory within the image directory.

(116) Revision 0.99.63: 06/01/05 14:10

Chapter 12. LCFG on Solaris 12.5. Installation

CPANdbfil DB File module for Perl
CPANdiges Digest::MD5 module for Perl
CPANhtmlp HTML::HeadParser module for Perl
CPANlibne Net::FTP module for Perl
CPANlibww LWP module for Perl
CPANmimeb MIME::Base64 module for Perl
CPANuri URI module for Perl
CPANw3csa W3C::SAX::Xmlparser module for Perl
CPANw3cut W3C::Util::Basekit module for Perl
LCFGclien LCFG profile client
LCFGclis2 Default resources for LCFG profile client
LCFGngene LCFG new generic component
LCFGnges1 Default resources for LCFG new generic component
LCFGupkg Updatepkgs program to keep packages up to date
LCFGutils LCFG resources, libraries and utilities

Figure 12.1: Packages required for LCFG image

❑ An NFS-exported Jumpstart directory, containing the rules file and the start and
finish scripts (see [Mic] for details about how these files are used). It also should
contain an LCFG setup script to be executed on the client.

Each directory should be NFS exported read-only. If the exports are read-write, the So-
laris Jumpstart installation program will overwrite information in the directories, causing
subsequent installations to fail.

All packages, other than base Solaris 9 packages in the core required cluster (SUNWCreq),
may be in either uncompressed file system (directory) format with the package name be-
ing the name of the directory, or in gzip compressed datastream (file) format withpack-
agename- version- release.pkg.gz being the format of the filename. Base Solaris 9
packages must be in file system format, as installed bysetup_install\server (see
[Mic]).

12.5.2 Node installation

A small amount of additional server configuration is currently required for each node to be
installed. It is hoped that in the future, the Jumpstart server itself will be LCFG-managed
and these steps will not be necessary:

❑ add_install_client must be used on the Jumpstart server, as described in
[Mic] to add the client.

The node profile must be created and must containfstab andupdaterpms for the
Jumpstart to succeed.

At this point, the client can be rebooted from the network:

The Complete Guide to LCFG (117)

The Complete Guide to LCFG Paul Anderson

boot net - install

Once the kernel is loaded, the customstart script is called (see appendixD). This is
used to create the node’s Jumpstart profile based on its LCFG profile. It performs the
following steps:

❑ The LCFG root image is NFS mounted.

❑ The machine’s LCFG profile is retrieved usingrdxprof .

❑ A Jumpstart profile is created. This specifies that the installation will be an initial
install (upgrades are not supported), that the system is standalone and that only the
core required cluster (SUNWCreq) of packages should be installed. Partitioning is
set up as specified in the LCFGfstab resources (which must be configured).

Jumpstart then performs the partitioning and installs the specified package cluster. The
customfinish script is then called. This copies an LCFG setup script from the Jump-
start share onto the target system (into/etc/rc2.d), to be executed upon next reboot.
The Jumpstart portion of the installation is complete at this point, and the system is re-
booted.

Upon first reboot, the LCFG setup script is executed. This performs the following steps:

❑ The LCFG core image is NFS mounted.

❑ The LCFG, Sun Freeware and Solaris 9 package repositories are NFS mounted.

❑ An initial set of directories and symbolic links are created to allow LCFG to func-
tion.

❑ The node’s LCFG profile is retrieved usingrdxprof .

❑ The list of packages that should be installed is taken from the profile and passed
to updatepkgs . This performs the necessary package additions, removals and
upgrades to bring the installed packages in line with those specified in the profile.
For this to work successfully, theupdaterpms component must be configured
and the correct packages profile must be specified.

❑ Steps are taken to ensure the package repositories will still be mounted after reboot-
ing.

❑ The setup script removes itself.

❑ The system is restarted.

Following this, the system reboots in an LCFG-managed state, provided the LCFGboot
component is configured in the profile and has been installed. Thelcfginit program
must also be installed, to clear temporary directories and set a boot timestamp on startup.

(118) Revision 0.99.63: 06/01/05 14:10

Appendix A

Macros

The Complete Guide to LCFG (119)

The Complete Guide to LCFG Paul Anderson

A.1 Mutate.h

/*
* Standard Mutation Macros for LCFG Server
*
* Paul Anderson <dcspaul@inf.ed.ac.uk>
* Version 2.1.64 : 15/12/04 07:43
*
* ** Generated file : do not edit **
*
* 1) Macros with names of the formQ() expect their argument
* to be a quotde string (Perl string syntax). This allows
* arguments to be specified which are not normally acceptable
* to the C preprocessor (Eg. containing comment characters).
*
* 2) Other macros use the literal values of the argument. In this
* the value of the argument must be acceptable to the C
* preprocessor.
*
* 3) Strings of the form � STRING � (note the spaces) are treated
* are "strongly" quoted - ie. the STRING may contain any
* characters (apart from ��). Use Alt-Gr/Z and Alt-Gr/X to get
* the quite characters.
*
* 4) The server treats the character ¢ (Alt-Gr/C) as a resource
* separator equivalent to a newline. This allows you to
* create multi-line macros by ending lines with ¢\
*/

#ifndef _LCFG_MUTATE_H
#define _LCFG_MUTATE_H

/* Override a value */
#define mSET(A) � A �
#define mSETQ(A) A

/* Append an item to a list (space-separated) */
#define mEXTRA(A) ($_?"$_ ":""). � A �
#define mEXTRAQ(A) ($_?"$_ ":"").A

/* True if list contains item $a (really for use in other macros) */
#define _mCONTAINSA eval ’; s/\s+/’

/* Append an item to a list if not already present (space-separated) */
#define mADD(A) my $a= � A �; (/\b(\Q$a\E)\b/) ? $_ : (mEXTRA(A))
#define mADDQ(A) my $a=A; (/\b(\Q$a\E)\b/) ? $_ : (mEXTRAQ(A))

/* Prepend an item to a list (space-separated) */
#define mPREPEND(A) � A �.($_?" $_":"")
#define mPREPENDQ(A) A.($_?" $_":"")

/* Replace an item in a list (space-separated) */
#define mREPLACE(A,B) my($a,$b)=(� A �, � B �); s/\b(\Q$a\E)\b/$b/g; $_
#define mREPLACEQ(A,B) my($a,$b)=(A,B); s/\b(\Q$a\E)\b/$b/g; $_

/* Remove an item from a list (space-separated) */
#define mREMOVE(A) my $a= � A �; eval ’s/\b(\Q$a\E)\b//g; s/\s+/ /g’; $_
#define mREMOVEQ(A) my $a=A; eval ’s/\b(\Q$a\E)\b//g; s/\s+/ /g’; $_

/* Append a string (no separator) */

(120) Revision 0.99.63: 06/01/05 14:10

Appendix A. Macros A.1. Mutate.h

#define mCONCAT(A) $_. � A �
#define mCONCATQ(A) $_.A

/* Prepend a string (no separator) */
#define mPRECONCAT(A) � A �.$_
#define mPRECONCATQ(A) A.$_

/* Replace a substring (no separator) */
#define mSUBST(A,B) my($a,$b)=(� A �, � B �); s/\Q$a\E/$b/g; $_
#define mSUBSTQ(A,B) my($a,$b)=(A,B); s/\Q$a\E/$b/g; $_

/* Lookup host IP */
#define mHOSTIP(H) $_= � H � ; &$_HostIP

#endif

The Complete Guide to LCFG (121)

The Complete Guide to LCFG Paul Anderson

A.2 Validate.h

/*
* Standard Validation Macros for LCFG Server
*
* Paul Anderson <dcspaul@inf.ed.ac.uk>
* Version 2.1.64 : 15/12/04 07:43
*
* ** Generated file : do not edit **
*
*/

#ifndef _LCFG_VALIDATE_H
#define _LCFG_VALIDATE_H

/* A member of a list */
#define vENUM(L) Enum(� L �)
#define vENUMQ(L) Enum(L)

/* A line of a file */
#define vINFILE(F) InFile(� F �)
#define vINFILEQ(F) InFile(F)

/* An IP address */
#define vIPADDR /ˆ(\d+)\.(\d+)\.(\d+)\.(\d+)$/ && \

$1<256 && $2<256 && $3<256 && $4<256

/* A list of IP addresses */
#define vIPADDRLIST !scalar grep { !(vIPADDR); } split(’ ’,$_);

/* A valid hostname (in the DNS) */
#define vHOSTNAME Hostname()

/* A list of valid hostnames (in the DNS) */
#define vHOSTLIST HostList()

/* A URL */
#define vURL /ˆhttp:\/\/([ˆ\/]+)\// && ($_=$1) && Hostname()

#endif

(122) Revision 0.99.63: 06/01/05 14:10

Appendix B

List of Components

The Complete Guide to LCFG (123)

The Complete Guide to LCFG Paul Anderson

B.1 alias

LCFG mail alias component

DESCRIPTION

This component manages the sendmail aliases file.

RESOURCES

addr tagtag!alias resource

The mail address (username) corresponding to the given tag. If this is null, the mail address is assumed to be
the same as the tag.

aliasfile

The full pathname of the alias file to be managed.

aliases

A space-separated list of alias tags.

alias tagtag!alias resource

The alias corresponding to the given tag.

basefile

The full pathname of a file (in alias file format) containing aliases to include in the output file. All aliases
appearing in this file will appear (in order) in the output file, before any aliases specified explicitly as resources.
Aliases in the file which also appear in the explict rresources will be replacde with the values from the resources.
This resource is optional.

PLATFORMS

Redhat7, Redhat9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.0.0-1

(124) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.2. amd

B.2 amd

LCFG amd component

DESCRIPTION

This object starts theamdautomounter.

conftmpl

The template/etc/amd.conf file.

gvariables

A list of tags each defining a global variable in the/etc/amd.conf file.

gvar tag

The global variable entry associated with the tagtag.

maplist

A list of amd map tags.

path tag

The filesystem path for the amd map associated withtag.

name tag

The amd map name for the amd map associated withtag.

type tag

The type of map (eg hesiod, file) for the maptag.

mountoptions

The value required for the AMDMOUNT OPTS environment variable - used in various hesiod maps. Optional,
and probably Edinburgh specific.

AUTHORS

Alastair Scobie <ascobie@inf.ed.ac.uk>

VERSION

0.100.10-1

The Complete Guide to LCFG (125)

The Complete Guide to LCFG Paul Anderson

B.3 apache

LCFG Apache component

DESCRIPTION

Simple component to start and stop a default installation of Apache.

RESOURCES

config

The config file to start httpd with. If the filename is not an absolute filename, then it is relative to theserverroot.
The apache default is used it not specified, this is currentlyconf/httpd.conf. This resource is equivalent to httpd
-f option.

conftmpl

Theconfigtemplate file. If this resources is set, then it will pass the template throughsxprof with all apache
resources defined, the resulting output will go to the file specified byconfig. If it is null (the default), then the
existingconfig is not changed.

serverroot

Sets the initial value for the ServerRoot apache directive. This can then be overridden in the config file. The
apache default is used if this is not specified, this is currently/etc/httpd. This resource is equivalent to the httpd
-d option.

startssl

A boolean value specifying whether the secure web server should be started, otherwise just the regular one will
be. This has implications if the server requires a pass phrase, as the machine will stop at boot time waiting for
the pass phrase if startssl is true and the SSL certificate requires a pass phrase.

METHODS

start

Callsapachectl start

stop

Callsapachectl stop

restart

As LCFG spec, ie calls stop then start. Not the same asapachectl restart .

ctl [params]

Callsapachectl [params]

ERRORS

It is an error ifconftmpl andserverroot/config specify the same file, as data loss is likely to occur. Note the the
checking isn’t foolproof, and file/path names with .. in it will not work.

(126) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.3. apache

NOTES

As this component currently just calls the default apachectl, it will only launch httpd if the config file exists and contains
no errors.

RedHat have changed apachectl to source the /etc/sysconfig/apache file for extra options. It is this file that this compo-
nent updates.

AUTHORS

Neil Brown <neilb@dcs.ed.ac.uk>

VERSION

1.1.7-1

The Complete Guide to LCFG (127)

The Complete Guide to LCFG Paul Anderson

B.4 apm

LCFG apm component

DESCRIPTION

This component starts the APM daemon (apmd).

proxy

The name of theapmd proxy script. If there are APM events defined in the resourceapm.events , this file
will be constructed by resources. Otherwise the script will be assumed to be created by other means (eg RPM
distribution).

The default is/etc/apm/apmd proxy .

events

A list of APM events to service. Used to create theapmd proxy script.

action event

The action to perform for the specified APM event.

daemonopts

Options for theapmd daemon.

AUTHORS

Alastair Scobie <ascobie@inf.ed.ac.uk>

VERSION

0.100.5-1

(128) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.5. arpwatch

B.5 arpwatch

Track MAC/IP mappings

DESCRIPTION

This component kicks off the arpwatch daemon to log ARP packets and keep track of the MAC/IP mappings.

RESOURCES

interfaces

Which interfaces should we watch? This resource must be set.

accept bogons

Are we interested in reporting bogons, or should we just accept them and put them into the database?

directory

Which directory should the data files live in?

runas

Which user should the daemon run as?

sendTo

Whom should the daemon send mail to?

sendAs

Whom should the daemon send mail as?

arpwatch

What’s the path to the daemon?

AUTHORS

George Ross <gdmr@inf.ed.ac.uk>

VERSION

1.99.13-1

The Complete Guide to LCFG (129)

The Complete Guide to LCFG Paul Anderson

B.6 auth

LCFG auth component

DESCRIPTION

This component contructs all the authorization files allowing access to the machine. This includes/etc/passwd ,
/etc/group , /etc/hosts.equiv and/root/.rhosts .

rootpwd

The encrypted root password.

base passwd

The base file used to populate/etc/passwd .

extrapasswd

A list of passwd entries tags to be added to/etc/passwd .

pwent TAG

An additional passwd entry.

base group

The base file used to populate /etc/group.

extragroup

A list of group entries tags to be added to/etc/group .

grpent TAG

An additional group entry.

shadow

This resource, if set toyes , will convert the passwd file files to the more secure shadow equivalent.

users

A (space-separated) list of users or netgroups to be added to the/etc/security/access.conf file.

owner

A (space-separated) list of workstation owners. Valid usernames in this list will be added to the/etc/security/access.conf
file.

userhalt

If this resource is non-null, password file entries (with no password) will be created for the usersshutdown
andreboot with the shells/usr/bin/usershutdown and/usr/bin/userreboot .

rhosts

A (space separated) list of items to be added to the/root/.rhosts

equiv

A (space-separated) list of items to be added to thehosts.equiv file.

nsu

A list of tags, each representing one line in thensu.conf file. If this resource is null, the nsu.conf file will
not be changed.

(130) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.6. auth

nsu TAG

One line of thensu.conf file. Note that ”%” characters in the value of this resource will be translated into
”$” before writing to the configuration file. This allows the use of%(FOO) to avoid the problems of shell
interpretation for\$(FOO).

tmp mode

If non-null, specifies the chmod protection mask to be applied to/tmp .

var tmp mode

If non-null, specifies the chmod protection mask to be applied to/var/tmp .

consolepermclasses

This is a list of console file and device classes to be defined in the/etc/security/console.perms file.

consolepermclass tag

This is the definition for the class associated withtag.

consolepermrules

This is a list of rules for the file and device classes defined inconsolepermclasses .

consolepermrule tag

This is the definition for the rule associated withtag.

accessrules

A list of rules for the/etc/security/access.conf file.

accessrule tag

The definition for the access rule associated withtag.

identdconf

Name of the file to be used as the/etc/identd.conf configuration file.

protectdevs

List of devices (eg disks) which should not be added to the/etc/security/console.perms file. Nor-
mally set to the same value as thefstab.disks resource. Note that the device entry should be shortform (eg
hda rather than /dev/hda).

AUTHORS

Alastair Scobie <ajs@inf.ed.ac.uk>

VERSION

0.100.8-1

The Complete Guide to LCFG (131)

The Complete Guide to LCFG Paul Anderson

B.7 authorize

LCFG basic authorization module for ”om”

DESCRIPTION

Theauthorize resources are used by theLCFG::Authorize Perl module. In a default installation, this module controls
which users have the capabilities necessary to executeom commands on LCFG components. There is no component
code for this module.

Note that LCFG::Authorize is a very basic authorization module which is not suitable for large or complex authorization
schemes, and it may not be used in all installations. For example, DICE uses the LDAP-basedDICE::Authorize module
instead - this selection is controlled by the component’sng authorization resource which is normally set to the value
of profile.authorize.

Components allow a user to run a methodfoo if the user has a ”capability” listed in theom acl foo resource. By default,
this has the valueom/all, so users with this capability can execute any component method.

The <lcfgcap> command may be used to query capabilities.

RESOURCES

groups

A (space-separated) list of tags representing groups of users.

users groupgroup!authorize resource

A (space-separated) list of usernames for users in thegroup.

caps groupgroup!authorize resource

A (space-separated) list of capabilities to be given to the users in thegroup.

PLATFORMS

Redhat7, Redhat9, Solaris

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>, Simon Wilkinson <sxw@inf.ed.ac.uk>

VERSION

0.99.5-1

(132) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.8. bluez

B.8 bluez

LCFG BlueZ Bluetooth component

DESCRIPTION

This component controls the Bluetooth subsystem.

RESOURCES

hcitmpl

Pathname of template file for hci daemon config.

dund

True to enable dund daemon.

dund args

Command line args to dund.

hcid name

hcid config parameter (see hcid configuration file template).

hcid security

hcid config parameter (see hcid configuration file template).

hcid pairing

hcid config parameter (see hcid configuration file template).

hcid linkmode

hcid config parameter (see hcid configuration file template).

hcid linkpolicy

hcid config parameter (see hcid configuration file template).

hcid auth

hcid config parameter (see hcid configuration file template).

hcid encrypt

hcid config parameter (see hcid configuration file template).

hcid iscan

hcid config parameter (see hcid configuration file template).

hcid pscan

hcid config parameter (see hcid configuration file template).

helper

The pathname of a command which returns the PIN to be supplied to remote devices when a connection is
initiated from the local machine. By default, the value is /usr/lib/lcfg/bluez/getpin - this simply returns the same
PIN used for inbound connections (set by thepin resource). Note that the Redhat standard is/usr/bin/bluepin
which is intended to request the PIN via an X dialog, but this does not always work.

pand

True to enable pan daemon.

The Complete Guide to LCFG (133)

The Complete Guide to LCFG Paul Anderson

pand args

Command line args to pan daemon.

pin

Bluetooth PIN - this is the PIN which should be supplied by inbound connection/pairing requests. Note that a
different PIN may be required for outbound connections (see thehelper resource).

ppptmpl

The pathname of the template file for the PPP config file. If this is null, no PPP config file will be created.

ppp dns

PPP configuration parameter (see PP configuration template).

ppp netmask

PPP configuration parameter (see PP configuration template).

ppp local

PPP configuration parameter (see PP configuration template).

ppp remote

PPP configuration parameter (see PP configuration template).

ppp idle

PPP configuration parameter (see PP configuration template).

ppp extras

PPP configuration parameter (see PP configuration template).

ppp extra auth

PPP configuration parameter (see PP configuration template).

ppp extra def

PPP configuration parameter (see PP configuration template).

ppp extra arp

PPP configuration parameter (see PP configuration template).

ppp extra ipx

PPP configuration parameter (see PP configuration template).

ppp extra route

PPP configuration parameter (see PP configuration template).

rfaddr devdev!bluez resource

The Bluetooth address of the specified device.

rfbind devdev!bluez resource

If this resource is true, the specified device will be bound by rfcomm at startup (default is true).

rfchannel devdev!bluez resource

The Bluetooth channel for the specified device.

rfdescr devdev!bluez resource

The description of the specified device (comment).

rfdevs

A list of device numbers for rfcomm devices. Each device will appear as/dev/rfcommN, whereN is the device
number.

(134) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.8. bluez

PLATFORMS

Redhat7, Redhat9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

0.99.11-1

The Complete Guide to LCFG (135)

The Complete Guide to LCFG Paul Anderson

B.9 boot

LCFG boot component

DESCRIPTION

The boot component manages which LCFG components and SystemV init scripts are started or stopped when the
system moves from one run level to another (eg boot time, shutdown etc).

It has three main functions :-

❑ to stop and start components and init scripts (eg at boot time)

❑ to call therun method of certain LCFG components (typically from a nightly cron job)

❑ to call thesuspendmethod of certain LCFG components when a system is suspended, and call theresume
method of those components when the system is resumed.

Both LCFG components and SystemV init scripts are managed; for brevity, this document refers toservicesto refer to
the union of these.

Services stop/start

The boot component recalculates whichservices(LCFG components and init scripts) should be started or stopped at
one of two events :-

❑ therestart method is called as a result of the system transitioning from one runlevel to another; eg. on boot or
shutdown.

❑ theconfiguremethod is called as a result of some configuration change.

The resource listboot.servicesis evaluated to determine which services should be running at the target run level. Each
service has an associated resourceboot.levelsservicewhich is a list of the run levels that this service should be active
in.

The component now produces an ordered list of services which shouldn’t be running in the target run level and require
stopped. Each service has an associated resourceboot.stop servicewhich indicates two things. Firstly it indicates the
service’s stop priority level. This is similar to the familiar SystemV rc priority levels; services with lower priority levels
are stopped before those with higher priority levels. The priority level can also take the valueNO which indicates that
the service should never be stopped at a transition (used for services which are only ever started). The resource also
indicates whether the service should be stopped for this event (restart and/orconfigure). The majority of services will
only specify therestart event; ie the service will only be stopped at a runlevel transition. The use of theconfigureevent
is described later. A default value forboot.stop serviceis 0 restart; this indicates that the priority is0 and that the
component should only be stopped at a runlevel transition. Having produced this list, the component stops the services
in priority order.

The component now produces an ordered list of services which aren’t already running but should now be in the target
run level. Each service has an associated resourceboot.start servicewhich has similar syntax and meaning to the
boot.stop serviceresource. The only difference is that services with a start priority of100or above are not started if a
previous service has requested a reboot.

Once all necessary services are stopped or started, the component checks to see if any service has requested a reboot
(by use of the standard LCFGRequestBootmacro); if so, the component will schedule an immediate reboot. Only
services with aboot.reboot serviceresource value including the current event type are checked; the default value
for this resource isrestart which indicates that this component should only be able to trigger a reboot at a runlevel
transitition.

(136) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.9. boot

Run method

The boot component’srun method is used to call a specified method, usuallyrun , of certain LCFG components to
perform, typically, some routine maintenance function. It is normally called nightly (via cron). It does not support
SystemV scripts.

The resourceboot.run is the list of components to be called. Each LCFG component on this list has an associated
boot.user componentandboot.runmethod componentresource. The first resource indicates which userid to use to
call the component; the default value isroot. The second resource indicates which method to call of the component;
the default value isrun .

This method can also be used to call arbitrary shell commands. If an element of theboot.run list has an associated re-
sourceboot.type componentof direct, the associatedboot.runmethod componentresource specifies a shell command
to be executed.

Once all the specified components have been called, the boot component performs the same reboot check as it does
when starting/stopping services. Adding the valuerun to a component’sboot.reboot serviceresource will allow that
component to trigger a reboot.

Suspend/Resume

The boot component’ssuspendmethod will call thesuspendmethod of those LCFG components listed in the resource
boot.suspend, in the order as specified in the resource. Theresumemethod will call theresumemethods of the same
components, but in reverse order.

Configure event - what for ?

Normally new services which are added to theboot.servicesresource are not started until the next runlevel transition (
usually boot time). Sometimes, however, it is useful to start a service as soon as it has been added to theboot.services
resource. This can be achieved by adding the valueconfigure to the service’sboot.start serviceresource. Similarily,
adding this value to the service’sboot.stop serviceresource will result in the service being stopped as soon as it is
removed from theboot.serviceslist.

Adding the valueconfigure to a service’sboot.reboot servicewill result in that service being able to trigger a reboot if
it has been started or stopped as a result of aconfigureevent.

RESOURCES

Services stop/start

services

List of services (LCFG components and SystemV scripts) to be managed by the component.

levels service

The run levels in which this service should be running.

start service

The start priority level for this service. Also indicates in which bootevent(s)this service will be started. The
default value is99 restart.

stop service

The stop priority level for this service. Also indicates in which bootevent(s)this service will be stopped. The
default value is0 restart.

reboot service

Indicates for which bootevent<s > this service will be allowed to trigger a reboot. The default value isrestart.

The Complete Guide to LCFG (137)

The Complete Guide to LCFG Paul Anderson

Run method

run

List of LCFG components to be called when the boot component’srun method is invoked.

runmethod component

The method to be called of the given component. The default value isrun .

user component

The userid to use to call the component. The default value isroot.

reboot component

Adding run to this resource will allow the specified component to trigger a reboot.

Suspend/Resume

suspend

A list of LCFG components to suspend and resume (by calling theirsuspendandresumemethods). Compo-
nents are suspended in the order given in the resource, and resumed in the reverse order.

FILES

/var/{lcfg|obj}/tmp/boot.status

This file indicates the current run level and those services which should be running at this level.

/var/{lcfg|obj}/tmp/boot.order

This file indicates the order in which components were started at the last runlevel transitition.

PLATFORMS

Redhat7, Redhat9

AUTHOR

Alastair Scobie<ascobie@inf.ed.ac.uk>

VERSION

1.1.30-1

(138) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.10. client

B.10 client

LCFG profile client

DESCRIPTION

The client profile component for LCFG. This component manages the rdxprof daemon which fetches system configu-
ration protocols from the server (see lcfg-server).

ADDITIONAL METHODS

Therun method sends a HUP to the daemon initiating a fetch of the profile.

The context method is called to change a ”context” variable. Arguments of the formvar=valuecause the specified
context variable to be set to the specified value. A context variable is removed by setting an empty value. The option
-w before the context arguments can be used to block the method call until the context change is complete and all
components have reconfigured.

The install method fetches and installs a profile from the URL specified as the first argument (default is the value in
the current profile). The optional second argument specifies the filesystem root for the profile installation. Note that
this method is designed for use at install time and does not honour the resources which specifyrdxprof parameters for
a client running as a normal daemon. In particular, it does not normally notify components of changes; however an
optional-n argument can be specified as the first argument to theinstall method, which will be passed tordxprof .

RESOURCES

ack

Set this resource non-null to enable client acknowledgements (-a option to rdxprof.

acklimits

The acknowledge time limits-a for rdxprof.

components

A space-separated list of components to be notified when their resources change. The default value for this
resource references theprofile.componentsresource and sorts the entries according to theng cforder resources
of the individual components. It is not normally necessary (and probably a mistake) to manually modify this
resource.

debug

A set of rdxprof debug flags.

notify

Non-null for rdxprof to notify components of resource changes by calling the methods defined in theclient.reconfig component
resources. (-n option).

poll

The poll (-p) argument for rdxprof.

rpminc

If this resource is non-null and specifies the pathname of a file which exists (at the time the profile is parsed),
then a line will be added to the end of the rpmcfg file to include this file. This is useful for locally specifying
additional RPMs.

runupdate component method component method!client resource

This resource specifies a method to run when the RPM list changes (rdxprof-U option). The method may be
followed by any necessary options.

The Complete Guide to LCFG (139)

The Complete Guide to LCFG Paul Anderson

timeout

The HTTP request timeout interval for the rdxprof-t option.

url

The list of URL roots for the rdxprof-u option. The list may be space-separated (or comma-separated).

verbose

Non-null for rdxprof verbose logging.

warn

rdxprof warning flags.

xmldir

The xml directory for the-x option of rdxprof. The default is @XMLDIR@.

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

2.1.35-1

(140) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.11. cron

B.11 cron

LCFG cron component

DESCRIPTION

This object configures thecron daemon. It does not start thecron daemon (this is done out-with the lcfg system),
but populates the cron configuration files and signals the runningcron daemon that they’ve changed. It will, however,
restart the daemon if it finds that it isn’t currently running.

Authorization files are constructed forcron andat . Thecron object then deletes the existing crontab files for any
users who have base crontab files in the directory specified by thecrontabs resource, or who have anadditions re-
source. Base crontabs are then copied in from the crontabs directory, and any additional entries specified byadditions
resources are added.

The manual method will call the cron files in the/etc/cron.* directories. This is typically used on portables
wherecrond is not normally run and this method is called by the manual user update process (viaboot.run).

allow

A (space-separated) list of users or netgroups for thecron.allow file.

deny

A (space-separated) list of users or netgroups for thecron.deny file.

atallow

A (space-separated) list of users or netgroups for theat.allow file.

atdeny

A (space-separated) list of users or netgroups for theat.deny file.

crontabs

A directory containing base crontabs. Any crontabs in this directory will replace the corresponding crontabs on
the machine.

additions

A (space-separated) list oftagsfor additional crontab entries specified in the resource database.

add tag

The crontab entry for the specified tag. If the minute field is specified asAUTO, the field will be replaced by
the machine’s host address modulo 60. This is useful for clones.

owner tag

The username under which the crontab entry for the specified tag should be run.

objects

A space-separated list of objects to be run fromcron . A cron.run obj resource must be present for each
object listed. The object is executed with the method specifed by thecron.method obj resource at the time
specified by thecron.run obj resource.

run obj

The time at which to run the specifiedobject(in crontab format). If the minute field is specified asAUTO,
the field will be replaced by the machine’s host address modulo 60. This is useful for clones.

user obj

The username under which to run the specifiedobject .

The Complete Guide to LCFG (141)

The Complete Guide to LCFG Paul Anderson

method obj

The method to call for the specifiedobject .

args obj

Additional arguments to supply when running the specifiedobject.

AUTHORS

Jeremy Olsen <J.Olsen@ed.ac.uk>

VERSION

1.1.4-1

(142) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.12. dhclient

B.12 dhclient

A component to configure dhclient

DESCRIPTION

This component is really just a wrapper to play with spanning maps, thought it might be used for something else
someday. All this components resources are passed to dhcpd servers via spanning map.

RESOURCES

hostname

The hostname of this machine

mac

The mac address of this machine, this must be a valid mac address in the form XX:XX:XX:XX:XX:XX or
XX-XX-XX-XX-XX-XX and is validated as the profile is compiled.

hostinstallroot

The installroot to use.

hostfilename

Client bootfile to download, this is usually a bootloader like pxegrub or pxelinux

hostbootmenu

Configuration file for pxegrub.

hostrootpath

Root filesystem to be nfs mountedi, usually at install time.

mailmanager

Boolean resource used to indicate if the manager is to be emailed about problems.

manageremail

The email address that should receive problem reports.

AUTHORS

Iain Rae <iainr@dcs.ed.ac.uk

VERSION

0.91.15-1

The Complete Guide to LCFG (143)

The Complete Guide to LCFG Paul Anderson

B.13 dialup

LCFG dialup component

DESCRIPTION

This component useswvdial to establish a dialup PPP connection. The configuration file for wvdial is created from
the scheme parameters managed bylcfg-schemesand thelcfg-divine component is used to configure the network
parameters once the connection is established.

Therun method initiates a connection. An optional argument specifies the scheme to use. If no argument is specified,
the schemedef dialup is used.

Two special values can be used for resources which refer to wvdial parameters:

<blank >

This value generates a configuration file line for the resource with an empty value. This is different from
omitting the line, because wvdial will use the default value for parameter if the line is omitted.

<default >

This is equivalent to leaving the resource value blank; ie. wvdial will use any default value. However, specifying
this value prevents the scheme editor nse from closing up blank entries in multi-field values.

RESOURCES

schemes

A (space-separated) list ofscheme tags. This should include at least one scheme conventionally nameddef dialup
which specifies the default values.

userfile

This resource specifies a (space-separated) list of files containing scheme data that will be read before (and
take precedence over) the schemes specified in the resources. This is intended to allow a user to create tempo-
rary schemes, eg. while travelling with a portable. These files are normally managed with the scheme editor
nse. Ability to change this file gives a user the equivalent of root permission. The variable %HOME is sub-
stituted with the home directory of the user at the console, so typical values might be:%HOME/.schemes or
/home/owner/.schemes .

modem <tag >

The full pathname of the modem device. The value<auto> can be used to autodetect the modem using
wvdialconfig. (see wvdial man page)

baud <tag >

Modem baud rate. The value<auto> can be used to autodetect the baud rate using wvdialconfig. (see wvdial
man page)

phone <tag >

Telephone numbers. (see wvdial man page)

init <tag >

Modem initialisation strings. The value<auto> can be used to autodetect the init strings using wvdialconfig.
(see wvdial man page)

username <tag >

Dialup username. (see wvdial man page)

(144) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.13. dialup

password <tag >

Dialup password. (see wvdial man page)

dial <tag >

Modem dial command. (see wvdial man page)

wvdial <tag >

Additional wvdial parameters. (see wvdial man page)

PLATFORMS

Redhat9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

0.99.12-1

The Complete Guide to LCFG (145)

The Complete Guide to LCFG Paul Anderson

B.14 divine

Network configuration component for LCFG.

DESCRIPTION

This object configures and controls the divine network probe. Theprobe method is called when one of the controlled
interface comes, up to probe the network and determine the appropriate ”scheme”. The interface is set accordingly, and
affected LCFG components (such as mail) are reconfigured by using the context mechanism. Therun method can be
used to initiate a probe manually.

If an interface is a wireless interface, then all the specified wireless network names will be probed, in the order that they
appear in the scheme list. All schemes corresponding to a particular network will be probed in parallel. If the interface
is not a wireless network, then all non-wireless schemes will be probed in parallel. Default schemes will be tried if all
probes fail. DHCP is used if no explicit IP address is given.

Most addresses can be specified as DNS names or numbers. However, if the hostnames are not in the local DNS, they
must be specified as numbers, otherwise they will not be available when booting on remote networks.

OPTIONS

The following options are supported by thestart , run andprobe methods:

-a count

The number of times to retry an arp request when probing the network. Small values may fail to detect networks
with a slow arp response. Large values will increase the time required to probe a series of networks. The default
value is set by thearptries resource.

-C

Output progress to /dev/console.

-D

Debugging.

-e count

The number of times to retry a DHCP request. Small values may fail to detect networks with a slow DHCP
response. Large values will increase the time required to probe a series of networks. The default value is set by
thedhcptries resource.

-R reason

The given reason for the network probe is noted in any informational messages. This set to the interface name,
for example, when a probe occurs because the interface is coming up.

-s scheme

Attempt to set the specified scheme (only). No attempt is made to probe or to determine the applicability of the
scheme. The scheme is attempted on all interfaces in theif resource.

-t seconds

The timeout on DHCP requests. Small values may fail to detect networks with a slow DHCP response. Large
values will increase the time required to probe a series of networks. The default value is set by thedtimeout
resource.

-v

Verbose. Displays all probe attempts.

(146) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.14. divine

-w seconds

The timeout on wireless access point detection. Small values may fail to detect networks with a slow AP
response. Large values will increase the time required to probe a series of networks. The default value is set by
thewtimeout resource.

RESOURCES

arptries

The number of times to retry an arp request when probing the network. Small values may fail to detect networks
with a slow arp response. Large values will increase the time required to probe a series of networks. The default
value is 6.

dhclient

Use dhclient instead of pump for DHCP. (NOT YET IMPLEMENTED).

dhcptries

The number of times to retry a DHCP request. Small values may fail to detect networks with a slow DHCP
response. Large values will increase the time required to probe a series of networks. The default value is 2.

dtimeout

The timeout on DHCP requests. Small values may fail to detect networks with a slow DHCP response. Large
values will increase the time required to probe a series of networks. The default value is 2.

interfaces

A (space-separated) list of interfaces to be controlled by divine. Each interface will be tried in the given order
and the first interface which matches a particular scheme will be set accordingly. All other interfaces will be
disabled.

type interfaceinterface!divine resource

The type of the specified interface. If the interface is supported by the ”linkstatus” command, then this can be
used to determine whether or not the interface cable is connected. This means that the schemes can be probed
faster because there is no need to wait for ARP timeouts on disconnected interfaces. Supported types are ”mii”
and ”eepro100”. The default is null (interface type unknown), in which case no test is made for the presence of
the cable.

schemes

A (space-separated) list ofscheme tags. This should include at least one scheme conventionally nameddefault
which specifies the normal default network parameters.

pidfiles

A (space-separated) list of filenames assumed to contain process IDs. When the scheme changes, each process
will be sent a USR2 signal and the name of the new scheme will be in/var/lcfg/tmp/schemes.scheme .
This can be used by processes to monitor and display scheme changes (eg. the ”sleepbutton” provided with obj-
kdm). The variable %HOME is substituted with the home directory of the user at the console, and the process
kill is run under the uid of the pidfile owner. The default is %HOME/.schemes.pid.

route

If this resource is true, divine will add a default for route for the specific gateway. If it is false, it will generate
resources for a routing component to handle the routing.

userfile

This resource specifies a (space-separated) list of files containing scheme data that will be read before (and
take precedence over) the schemes specified in the resources. This is intended to allow a user to create tempo-
rary schemes, eg. while travelling with a portable. These files are normally managed with the scheme editor
nse. Ability to change this file gives a user the equivalent of root permission. The variable %HOME is sub-
stituted with the home directory of the user at the console, so typical values might be:%HOME/.schemes or
/home/owner/.schemes .

The Complete Guide to LCFG (147)

The Complete Guide to LCFG Paul Anderson

defcontext

If this resource is non-null, it should be a profile ”context” which will be used for schemes which don’t specify
an explicit context. (This is in addition to thescheme=namecontext).

nocontext

If this resource is non-null, it should be a profile ”context” which will be set when no network scheme can be
detected. (This is in addition to thescheme=context).

dohosts

If this resource is true, then the IP address is registered in /etc/hosts as the address of the host.

oksound

The name of a sound file to play when a network scheme is successfully selected.

failsound

The name of a sound file to play when no network scheme can be selected.

cfopts

The options to be applied to divconf when it is called because an interface has come up.

wtimeout

The timeout on wireless access point detection. Small values may fail to detect networks with a slow AP
response. Large values will increase the time required to probe a series of networks. The default value is 0.5.

descr <tag >

An optional description of the scheme.

if <tag >

A (space-separated) list of interfaces for which this scheme is appropriate. If this field is blank, the scheme is a
candidate for all interfaces. Use ”ppp0” for schemes which are intended only for dialup.

wnet <tag >

The name of a wireless network to which the scheme should be applied. If this is blank, the scheme applies only
to wired interfaces. The name may be prefixed with /ad-hoc for an ad-hoc network (default is ”/managed”).

aplist <tag >

A (space-separated) list of access point MAC addresses for which this scheme is valid. By default, schemes are
valid for any AP. Mac Addresses must have the form XX:XX:XX:XX:XX:XX.

wep <tag >

The WEP encryption key for this wireless network as a hex string, or in the form ”s:PASSWORD”. If this is
blank, no encryption is performed. This field is ignored for wired networks.

masksize <tag >

The size (in bits) of the netmask for this network (default 24). If DCHP is being used (IP field is blank) or the
scheme is being used for PPP, then this is determined automatically.

script <tag >

The name of script to execute when this scheme is detected. The name of the scheme is passed as an argument,
and the script is run with the uid of the user owning the scheme file. The script is executed in the background
with input and output to /dev/null.

smtp <tag >

The name of a host to use as the mail relay. Local mail will always be delivered via the local sendmail program
which will forward it to this relay. If this is blank, then the LCFG-defined default mail relay will be used.
Setting this to ”localhost” will cause the local sendmail to deliver mail directly; this is usually necessary when
connected to a foreign network.

(148) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.14. divine

context <tag >

A context to be passed to the LCFG profile component. This can used to tune the system configuration towards
the type of connection. The default is set by the defcontext resource (normally ”net=remote”). The additional
context ”scheme=ID” is also selected.

ip <tag >

The IP address (or hostname) to which the host should be configured if this scheme is detected. If this is blank,
then DHCP will be used in an attempt to determine the host address. If a name is specified in the LCFG (rather
than an IP number), then the name must be available in the local DNS server. This field is ignored for dialup
schemes and the IP address is determined via PPP.

probe <tag >

The IP address (or hostname) of one or more well-known hosts (eg. the gateway) to be probed to identify this
scheme. If this is blank, the scheme will be applied as a default if all others fail. Note that more than one default
scheme is not meaningful, unless they are on different wireless networks. If a name is specified in the LCFG
(rather than an IP number), then the name must be available in the local DNS server. This field is not used for
dialup connections.

gw <tag >

The IP address (or hostname) of the gateway corresponding to this scheme. This value is set automatically
if DHCP is being used (IP field is blank), or when using a dialup scheme. If a name is specified in the
LCFG (rather than an IP number), then the name must be available in the local DNS server. The special
value <route> indicates that the existing default values for the routing component will be used to set up the
routing.

dns <tag >

The IP addresses (or hostnames) of DNS servers to use with this scheme. These hosts will be used as forwarders
by the local DNS server which is always queried first. If this is blank, then the default forwarders will be used.
If it is *, then no forwarders will be set. If a name is specified in the LCFG (rather than an IP number), then
the name must be available in the local DNS server. If left blank, DHCP and PPP will supply these values
automatically.

PLATFORMS

Redhat7, Redhat9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

3.5.31-1

The Complete Guide to LCFG (149)

The Complete Guide to LCFG Paul Anderson

B.15 dns

The LCFG DNS component

DESCRIPTION

This component starts the DNS service. It generates the DNS client configuration (/etc/resolv.conf). If the
resourcedns.type is set toserver it also generates the server configuration (/etc/named.conf) and starts the
server. Theupdate method schedules immediate zone maintenance for some or all of a server’s configured zones.

GENERIC RESOURCES

type

The type of DNS service. Valid options areclient (the default) andserver .

contextlabel

This resource does not actually affect the operation of the component, but instead is included in some of its
messages. Setting it to some lcfg context-specific value might therefore be useful to the user.

logFile

This resource defines the name of a log file, which will be processed when the logrotate method is called.

RESOLVER RESOURCES

ourdomain

What domain do we live in? (We can’t rely on hostname or domainname or dnsdomainname or the like for this,
as they’re likely to try to do some kind of address lookup and we can’t rely on that working!)

servers

A list of servers to place in the/etc/resolv.conf file. The order of servers in the list can be randomized.
If type is set toserver thenservers will default to 127.0.0.1. Note that while the object will translate
names to the addresses required in the configuration file, this will be done using the/etc/resolv.conf
file’s previous contents. It might therefore be thought better for this resource to contain explicit addresses
rather than names.

randomize

This resource, if set toyes , will randomize thedns.servers list.

fallback

A list of servers to be used in extremis ifservers happens not to be set for some reason. Dotted-quads would
probably be a good idea here. The order of these won’t be randomised.

options

A list of resolv.conf options.

search

A list of domains for theresolv.conf ”search” list.

global sortlist

cluster sortlist

local sortlist

Sortlists to be included in the/etc/resolv.conf file. ”local” entries come first, followed by the machine’s
attached wires, with the ”global” entries coming last.

(150) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.15. dns

local netmask

A netmask to be applied to the machine’s attached interfaces when constructing the sortlist.

explicit sortlist

If set, only the explicit sortlist resources are used when constructing the resover sortlist. The implicit list derived
by the component from the configured interfaces isnot used.

SERVER RESOURCES

forwarders

The addresses of forwarders which should be queried for unknown names before going out onto the Internet at
large.

slave

If forwarders are set, use them exclusively to answer for unknown names and don’t ever ask on the Internet at
large.

transfers in

If set, limits the number of concurrent inbound zone transfers. If not set the compiled-in version-dependent
default is used.

files

If defined, set an upper bound on the number of files which the server is allowed to have open at any one time.
Usually this is set high as a back-stop.

notify

Tell all the NS-listed nameservers when a zone is changed. They’ll still eventually find out anyway through the
usual zone-maintenance mechanisms, but this speeds things on a little. Note that it is also possible to specify
this on a per-zone basis.

also notify

Contains a list of addresses of stealt-secondary nameservers which should be notified when a master zone
changes.

query source

What should the source address of queries made by the nameserver look like? (Normally this is used to fix the
source port for firewalling; the default is to use an unspecified anonymous one.)

transfer source

Specify the source address and/or port to be used for zone transfer requests. If not specified the default is to use
any arbitrary port>1024.

run user

run group

Specify the user and/or group which the server should run as so as to limit any security exposure which might
arise. The component will attempt to chown any files and directories as necessary.

umask

The umask which the component should use, and which will be inherited by any processes it starts.

pid file

The name of a file into which the nameserver’s pid is written at startup.

The Complete Guide to LCFG (151)

The Complete Guide to LCFG Paul Anderson

version

How should the server answer ”version.bind txt chaos ” queries? If this is blank then the compiled-in
default (usually the software version) is used. If it’s ”RCS” then the dns component’s RCS ID is used. Anything
else is used verbatim.

listen on

If set, contains a list of interface addresses on whichnamed will listen for requests. (127.0.0.1 is the most
likely value for this resource to be set to.)

dialup

If set, causes normal zone maintenance to happen only at heartbeat intervals. This can avoid bringing up dialup
lines or making large zone transfers over slow links.

heartbeat interval

How often to do ”dialup” zone maintance. The compiled-in default is 60 (minutes). Setting this to zero disables
automatic zone maintenance, so updates are only done after an explicit request.

interface interval

How often shouldnamed scan for new or departing interfaces? The compiled-in default is usually reasonble.

channels

categories

Define the logging done by the nameserver.

channels contains a list of channel tags. For each tag there’s a correspondingchannel whatever re-
source that contains the body of the clause to be written to the configuration. Likewise,categories contains
a list of tags forcategory whatever .

zones

zones contains a list of zone tags for the zones carried on this server For each tag inzones there are corre-
spondingtype ... , file ... andmasters ... resources. The component applies ”reasonable” rules
as to whether these are required or not. Each zone also has requirezone ... and optionalznotify ...
resources.

updates

updates contains a list of all the defined update-sets. For each entry there’s a correspondingupdate thing
which contains a list of zone tags. The first entry inupdates is used by default if no user-supplied parameter
is passed to the Update() method.

acls

acls contains a list of tags specifying which access control list entries to configure in to the/etc/named.conf
file. For each tag there is a correspondingacl ... resource containing a list of values, in one of bind’s ac-
ceptable formats, defining the contents of the acl entry. The tag value is used as the name of the acl itself.

allow query

Contains a list of networks or acl-names, in standardbind format, which are allowed to query this nameserver.
An empty list means no restriction.

allow transfer

Contains a list of networks or acl-names, in standardbind format, which are allowed to do zone-transfers from
this nameserver. An empty list means no restriction.

allow recursion

Contains a list of networks or acl-names, in standardbind format, which are allowed to make recursive queries
through this nameserver. An empty list means no restriction.

(152) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.15. dns

allow notify

Contains a list of networks or acl-names, in standardbind format, which are allowed to send notify messages
to this nameserver. An empty list means no restriction.

named

Where to look for thenamed binary itself.

rndc

Where to look for therndc control program.

pending

A list of IN-class files innamed.conf format, to be included in the generated server configuration file. The
pending method will rotate any new versions of the files on this list into place. How those new versions get
there is outwith the scope of this component, though an exampleexpect script is distributed with it.

serial query rate

Used to limit the number of outstanding SOA queries during zone maintenance. The value is in queries/second.

zoneStats

Set to enable per-zone statistics.

statistics file

Specifies the name of the file into which the server will dump its statistics on request.

dump file

Specifies the name of the file into which the server will dump its internal database on request.

lwres

Enable lightweight resolver support in the server.

INview match

The ”match” rules which should apply to the IN-class views which the component generates in the/etc/named.conf
file.

INSTALLATION RESOURCES

The following resources are used only by the component’s Install() method, and therefore do not have any effect in
during normal operation.

installservers

A list of servers to use in addition to any passed in as parameters to the Install() method.

installsortlist

The sortlist, if any, to be defined in the install-time/etc/resolv.conf file.

installinterface

The name of the interface whose address and netmask should be used to compute the sortlist for the install-time
/etc/resolv.conf file if one is not specified explicitly.

The Complete Guide to LCFG (153)

The Complete Guide to LCFG Paul Anderson

PRIVATE RESOURCES

The following resources should not normally have their values changed from the installation defaults. They define
where the component’s various helper programs have been installed, or to provide Solaris/Linux compatibility hooks.
Setting them incorrectly may result in the component not functioning correctly. Refer to the component source itself
for details as to their various functions.

keygen

srvgen

makesortlist

getaddr

shufflestring

PLATFORMS

RedHat 7, RedHat 9. Previous versions ran on Solaris 2.6.

AUTHORS

George Ross <gdmr@dcs.ed.ac.uk>

VERSION

6.1.39-1

(154) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.16. example

B.16 example

An example LCFG component

DESCRIPTION

This component is an example only.

RESOURCES

server

An example resource which gets substituted into the configuration file.

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.4-1

The Complete Guide to LCFG (155)

The Complete Guide to LCFG Paul Anderson

B.17 file

The LCFG file component

DESCRIPTION

The file component can be used to create arbitrary configuration files and directories without the need to write a custom
component. The templates for the configuration files, and the resources to be substituted in them, may be supplied di-
rectly as resources of thefile component, or may be specified in an independent.def file (a ”managed component”).

RESOURCES

components

A list of ”managed” components for which configuration files should be generated. For each componentcomp
in the list, the resources specified below (see MANAGED COMPONENT RESOURCES) must be present. This
list should normally include thefile component itself, so that configuration files can be generated fromfile
resources without any additional default files. The default value isfile .

files

See MANAGED COMPONENT RESOURCES

file tagtag!file resource

See MANAGED COMPONENT RESOURCES

group tagtag!file resource

See MANAGED COMPONENT RESOURCES

mode tagtag!file resource

See MANAGED COMPONENT RESOURCES

owner tagtag!file resource

See MANAGED COMPONENT RESOURCES

tmpl tagtag!file resource

See MANAGED COMPONENT RESOURCES

type tagtag!file resource

See MANAGED COMPONENT RESOURCES

variables

A list of variable tags for variables to be substituted in any templates declared in thefiles resource.

v varvar!file resource

The values of the variable given by thevar tag.

MANAGED COMPONENT RESOURCES

Each managed component should define the following resources to specify the configuration files or directories to be
created on its behalf by thefile component. The managed components may include code of their own but, typically,
they do not - they consist of only a.def file and thefile component uses this to create their configuration files.

Managed components should also set the resourcecomp.ng cfdepend to >file so that the file component is called
whenever the resources change.

(156) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.17. file

comp.files

A list of file/directory tags. Each tag corresponds to a configuration file or directory to be created on behalf of
the componentcomp.

comp.file tag

A space-separated list of pathnames for configuration files or directories corresponding totag for component
comp. Normally, these will be full pathnames, but several objects in the same directory can be specified by
giving a common prefix; for example:

/home/users : fred jill

comp.group tag

The group for the file or directory corresponding totag. If this is null, then files are created with the same group
as the template, and directories with the same group as the running component.

comp.mode tag

The file mode for the file or directory corresponding totag. If this is null, then files are created with the same
mode as the template, and directories with the mode 0755.

comp.owner tag

The owner for the file or directory corresponding totag. If this is null, then files are created with the same
owner as the template, and directories with the same owner as the running component. Changing ownership of
links normally changes the ownership of the target and is not recommended. If the owner is specified as* , then
the name of the file itself is used as the owner. This is useful for creating home directories, for example.

comp.tmpl type

If the file corresponding totag has typetemplate , then this resource should give the full pathname of the
template file. If the type isliteral , then this resource should specify the template literally - newlines may
be included by using the\n escape sequence.

The template is passed through the template processor with the resources ofcompdefined, to create the config-
uration file.

comp.type type

The type of the configuration file or directory corresponding totag for componentcomp. This may bedelete ,
to delete any existing configuration file,template to create a file from a template file,literal to create a
file from a literal template,link to create a symlink from the template to the file, ordir to create a directory.
The type may optionally be followed by a colon and a space-separated list of options. The only option currently
supported iszap which will delete any existing filesystem object with the same pathname as the target file if it
has a different type. Directories will be deleted recursively and this should be used with care!

MANAGED COMPONENT EXAMPLE

#include "mutate.h"
#include "ngeneric-1.def"

!ng_cfdepend mSET(>file)
!ng_statusdisplay mSET(false)
!ng_reconfig mSET()

@files type_$ tmpl_$ file_$
type_$
tmpl_$
file_$
owner_$
group_$
mode_$
var1
var2

The Complete Guide to LCFG (157)

The Complete Guide to LCFG Paul Anderson

files A B homes

type_A template
tmpl_A path to the template
file_A path to the config file
type_B literal
tmpl_B the value of var1 is <%var1%>
file_B path to the config file

var1 some value to substitute in a template
var2 some value to substitute in a template

type_homes dir
file_homes /home : fred jill
owner_homes *
group_homes users
mode_homes 0700

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.0.9-1

(158) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.18. foomatic

B.18 foomatic

The LCFG foomatic component

DESCRIPTION

This component configures printers usingfoomatic. It also (optionally) configuresprintcap , lpd.conf, andlpd.perms.
This component does not manage printer daemons - use another component, such aslprng in conjunction withfoomatic.

RESOURCES

attr entryentry!foomatic resource

The attribute name for the printcap entry corresponding to tagentry.

conf

A list of tags for variables to be substituted in thelpd.conf template.

conf varvar!foomatic resource

The value of a configuration variable to be substituted in thelpd.conf template.

conftmpl

The pathname of a template used to create thelpd.conf file. If this is null, any existinglpd.conf file is un-
changed.

connect qq!foomatic resource

The foomatic connection parameter for the queue specified by the tagq. Foomatic is alleged to support the
following:

file:/path/file # includes usb, lp, named pipes
ptal:/provider:bus:name # HPOJ MLC protocol
lpd://host/queue # LPD protocol
socket://host:port # TCP aka appsocket
ncp://user:pass@host/queue # Netware (LPD, LPRng, direct)
smb://user:pass@wgrp/host/queue # Windows
stdout # Standard output (direct)
postpipe:"<command line>" # Free-formed backend command line

If this does not work for you, you can usefile:/dev/null and then use thepcap resource to replace thelp
parameter in the printcap with whatever you like. NOTE: if the connect resource is not set,foomatic-configure
will not be called for this queue. This allows special queues to be hand-crafted into the printcap using thepcap
resources.

default

The tag corresponding to the print queue to be used as the default.

descr qq!foomatic resource

The foomatic description parameter for the printer queue corresponding to the tagq. (see man foomatic-
configure).

driver qq!foomatic resource

The foomatic driver parameter for the printer queue corresponding to the tagq. (see man foomatic-configure).

location qq!foomatic resource

The foomatic location parameter for the printer queue corresponding to the tagq. (see man foomatic-configure).
Note that this must be unique among all the print queues!

The Complete Guide to LCFG (159)

The Complete Guide to LCFG Paul Anderson

opt oo!foomatic resource

The foomatic name of the specified option.

options qq!foomatic resource

A list of tags for any options to be supplied to foomatic for this printer queue. Read/etc/foomatic/lpd/q.lom to
see the available options and values.

optv oo!foomatic resource

The value for the specified option.

pcap qq!foomatic resource

A list of tags for additional printcap entries that should replace or augment those generated by foomatic for the
specified printer.

pcaptmpl

The name of the printcap file generated by foomatic.

perms

A list of tags for variables to be substituted in thelpd.perms file.

perms varvar!foomatic resource

The value of a variable to be substituted in thelpd.perms file.

permstmpl

The pathname of a template used to create thelpd.perms file. If this is null, any existinglpd.conf file is
unchanged.

printcap

The name of the printcap file used by the print system. ie. created by the foomatic component from the file
generated by foomatic.

printer q q!foomatic resource

The foomatic printer parameter for the printer queue corresponding to the tagq. (see man foomatic-configure).

queues

A list of printer queues to be configured.

spooler qq!foomatic resource

The foomatic printer parameter for the printer queue corresponding to the tagq. (see man foomatic-configure).

value entryentry!foomatic resource

The value of the printcap entry corresponding to tagentry. The special values<true > and <false> can be
used to define a binary parameter with no value, and to delete a parameter created by foomatic, respectively.

PLATFORMS

Redhat9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

0.99.9-1

(160) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.19. fstab

B.19 fstab

LCFG fstab component

DESCRIPTION

The object partitions disks and maintains the/etc/fstab file.

The /etc/fstab is first constructed from the partition information specified for the hard disks described by the
disks andpartitions diskresources. Theentries resource is then used to add additionalfstab entries.

Theadddisk method is used to add a new disk to the system. It will (optionally) partition the disk, make the filesys-
tems and create/etc/fstab entries. It is called implicitly by thepreparedisks method at system install time,
but can be called manually thereafter to add new disks.

The mountdisks andumountdisks methods can be used to mount or unmount all configured disks. These are
only intended for use when running the installroot for machine debugging/patching.

disks

A list of disks attached to this machine.

dopartition disk

This resource, if set tono , will stop the component from partitioning the diskdisk.

partitions disk

A list of partitions fordisk. A disk can only have primary partitions (up to 4). Extended and logical partitions
are not yet supported - the disk should be partitioned manually if these are required.

size partition

The size of the specified partition. The partition size can be given in megabytes, or be set tofree to indicate
that the partition should use up remaining disk space or be set to<existing> to indicate that the partition size
and location should not be changed.

type partition

The type of filesystem of the specified partition. Currently supported partition types areext2 , ext3 , raid
andswap. Alternatively, a numeric ID can be used to specify the partition type.

mpt partition

The mount point for the filesystem on the specified partition.

mkmpt partition

Determines how the component should behave when the mount point already exists and is populated with files.
Setting this resource tofail will cause a failure,ignore will ignore prexisting files andzap will delete any
prexisting files.

mntopts partition

Describes any mount options for the filesystem associated with the specified entry or partition.

passno partition

Describes the fsck passno for the specified entry or partition.

preserve partition

This resource, if set toyes , indicates that the component should not rebuild the filesystem when theadddisk
method is invoked.

mkprog partition

The program to create the file system (or whatever) in the specified partition.

The Complete Guide to LCFG (161)

The Complete Guide to LCFG Paul Anderson

mkopts partition

Any options to pass to the appropriate tool (eg mke2fs) for building the specified partition.

entries

A list of additional <fstab> entries.

spec entry

Describes the block special device or remote filesystem associated with the specified entry.

file entry

Describes the mount point for the specified entry.

vfstype entry

Describes the type of filesystem for the specified entry.

mntopts entry

Describes any mount options for the filesystem associated with the specified entry or partition.

freq entry

Describes the dump frequency for the specified entry.

passno entry

Describes the fsck passno for the specified entry or partition.

updfstab

A list of extra entries for/etc/updfstab.conf . An entry can be either a device,upfdef tag or an
include file of further definitionsupdfile tag .

updfdev tag

A list of line references for the specified device.

updfline tag line

An individual line for the specified device.

updfile tag

AUTHORS

Alastair Scobie <ascobie@inf.ed.ac.uk>

VERSION

1.1.22-1

(162) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.20. gdm

B.20 gdm

LCFG gdm component

DESCRIPTION

This component configures the Gnome display manager.

RESOURCES

allowremoteroot

True to allow remote root logins.

allowroot

True to allow local root logins.

autologin

The name of a user to be logged in automatically on startup.

bgcolor

The background colour for the login screen (ifbgtype is set to 2).

bgimage

The background image for the login screen (ifbgtype is set to 1).

bgscale

True to scale the backgound image to fit the screen.

bgtype

0 = no background
1 = image background
2 = solid colour background

broadcast

True to broadcast for XDMCP.

browser

True to display user browser.

command tagtag!gdm resource

The shell command to run for the namedtag.

commands

A list of tags for commands to run during the display of the login screen.

configavailable

True to allow the configuration to be changed from the login screen. Useful only for testing, since this will be
overwritten when the component reconfigures.

defaultface

The icon for the default face in the browser.

The Complete Guide to LCFG (163)

The Complete Guide to LCFG Paul Anderson

defsession

The tag for the default session if the user has not specified a preference.

exclude

A comma-separated list of usernames to be excluded from the browser.

facedir

The directory containing face icons for the browser.

greeter

The name of the greeter program. The graphical greeter is not (yet) supported and you probably don’t want to
change this.

haltcommand

The command to halt the system.

honorindirect

True to honor indirect XDMCP queries.

hosts

A comma-separated list of hosts to add to the chooser.

initcmd

A shell command to execute (as root) when the display manager is initialized.

logo

The full pathname of an image file to use as the logo in the greeter.

menuname tagtag!gdm resource

The name to appear in the menu for the session corresponding totag.

minuid

The minimum UID for users to appear in the browser.

precmd

A shell command to execute (as root) before the user session runs.

postcmd

A shell command to execute (as root) after the user session has ended.

rebootcommand

A shell command to reboot the system.

servers

A list of display numbers to run servers on.

session tagtag!gdm resource

The shell command to execute for the session corresponding totag.

sessioncmd

A shell command to execute (as the user) when the user session starts.

sessions

The list of tags for the sessions to be displayed in the menu.

(164) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.20. gdm

suspendcommand

A shell command to suspend the system.

systemmenu

True to display the system menu on the login screen.

titlebar

True to display a titlebar on the login screen.

welcome

The text string for the welcome message. The string %n is replaced with the hostname, and\n can be used for
a multi-line message.

x

The x-coordinate of the greeter box. Negative values can be used to provide an offset from the right of the
screen. If both this andy are empty, then the greeter will be centered.

xdmcp

Enable XDMCP. Do not do this witout setting appropriate entries in hosts.deny or hosts.allow. See the GDM
manual.

y

The y-coordinate of the greeter box. Negative values can be used to provide an offset from the bottom of the
screen. If both this andx are empty, then the greeter will be centered.

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

PLATFORMS

Redhat9

VERSION

0.99.20-1

The Complete Guide to LCFG (165)

The Complete Guide to LCFG Paul Anderson

B.21 grub

Component to generate and install grub bootloader

DESCRIPTION

This component is used to generate grub menu (.lst) files both to configure grub on the local machine and to provide
.lst files for remote hosts to boot off via pxegrub. The object supports both the VGA and serial consoles and will allow
arbritrary command line options to be passed to the kernel.

The component builds up a series of files based on thegrubfiles resource and stored them in /tftpboot/grubfiles. A
local configuration file can be specified for install into /boot/grub/menu.lst.

RESOURCES

localconf

Thegrubfile configuration which should be used as the local configuration file, this will be copied to /boot/grub/menu.lst

grubfiles

A list of configuration files which the grub component should generate, each file is made up of a number of
global configuration statements followed by a list of operating systems to boot.

defaultboot $

The default menuitem to boot (0 is the first.....).

timeout $

how long to wait until booting the default menuitem

fallback $

The menu item to fall back to if the default menu will not boot.

menucolour $

A pair of colours (foreground/background) for the menu.

menucolourselect $

Similarly a pair of colours to set a selected menu item to.

serialunit $

This resource is used to define the serial port to be used when grub is to be used via a serial console, 0=com1,
1=com2

serialspeed $

The speed to set the coms port to.

terminal $

Where to display output from grub, this can be console (on a PC the SVGA port) or serial (the serial port
selected byserialunit or both serial and console in which case the first connection which returns keypress will
be selected.

menulist $

A list of menuitems to be used in this grub file.

hiddenmenu $

This resource is used to replace the standard grub menu with something a bit more cryptic.

(166) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.21. grub

password $

A password to protect the menu. This should be an md5crypt generated by running /sbin/grub and using the
md5crypt command. This prevents users from editing the menu items by using the e option.

menuitems

A tag list of menu items, these are essentially different boot options.

tite $

Some identifiable title for the item.

lock $

Prevents anyone booting a menuitem without entering a password

mpassword $

Password to control access to this menu item, this can either prevent people editing the item or (in conjunction
with the lock resource, prevent anyone booting an item. As with thepassword$ resource this is an md5cryp.

root $

The grub root device, not to be confused with a Unix root filesystem.

configfile $

Specify an alternative configuration file to use.

chainloader $

Grub normally can deal with booting OS’s but in cases where it can’t this simply treats the appropriate chunk
of disk like a boot record and attempts to boot it. =itemkernel $

The path to the kernel to use (usually /boot/vmlinuz).

kroot $

the root filesystem to boot from.

kernelargs $

Any kernel arguments to be passed to the kernel.

initrd $

An initial ramdisk to be loaded.

boot $

Umm, it’s all hopefully loaded, boot it.

splashimage

Define a background image to be displayed by grub. NB this is a redhat addition and may not work with official
releases of grub.

clientmode

A yes/no flag to indicate whether or not grub should generate a local configuration file and install itself on the
MBR of the local machine.

servermode

A yes/no flag to indicate whether the host should generate grub configuration files for use in pxegrub installs.

For more information see the grub manual

The Complete Guide to LCFG (167)

The Complete Guide to LCFG Paul Anderson

AUTHORS

Iain Rae <iainr@inf.ed.ac.uk>

VERSION

1.2.3-1

(168) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.22. hardware

B.22 hardware

LCFG hardware component

DESCRIPTION

The object configures hardware. It is also expected, eventually, to twiddle hardware parameters for things like disks. It
can (primitively) configure PNP devices such as sound cards, etc.

chmoddevices

A list of chmod commands to set protection on device files.

chmoddevices entry

The chmod command for tagentry.

pnpdevices

A list of PNP boards to be configured at boot time. The configuration files for each PNP board live in
/etc/obj/conf/pnp .

modlist

A list of kernel module rules to be added to the/etc/modules.conf file.

mod tag

The kernel module rule associated withtag.

permmodules

A list of modules to be installed at boot time. Options for the module loader can be specified by use of a
modoptmoduleresource. The module name for this module can be overriden by use of a modnamemodule
resource - this is useful when the module file lives in a non standard location. The modloadermoduleresource
specifies which loader to use.

modopt module

Module loader options for modulemodule

modname module

This resource can be used to override the name of the module given to the module loader.

modloader module

Specifies which module loader to use for this module. Defaults to/sbin/insmod .

devices

A list of tags specifying device aliases to be created in /dev.

devalias tag

The alias to be created for the specified device tag. If this resource is missing, it defaults to the same as the tag.

dev tag

The name of the device file for the specified device tag.

apm script

The name of a script to be called when theresume and suspend methods are invoked. The particular
method used is passed as an argument to this script. This is useful for esoteric laptops that aren’t satisfied by
the following simple hacks.

The Complete Guide to LCFG (169)

The Complete Guide to LCFG Paul Anderson

apm vt

If this resource is set, thesuspend method will change to VT1 (first virtual terminal) prior to the machine
being suspended. Theresume method will change to the virtual terminal specified by this resource. This
resource has no effect if theapm script resource is set.

apm netrestart

If set to ”yes”, the network is restarted by theresume method. This resource has no effect if theapm script
resource is set.

tpreset

If set to ”yes”, a Synaptics Trackpoint or Touchpad will be reset.

videobusmaster

If set to ”yes”, the PCI or AGP card with the video card will be configured to be a bus master (using setpci)

AUTHORS

Alastair Scobie <ascobie@inf.ed.ac.uk>

VERSION

0.100.4-1

(170) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.23. init

B.23 init

LCFG init component

DESCRIPTION

This object maintains local additions to the/etc/inittab file. It also applies local hacks to the initscripts.

entries

A list of inittab entries to be added to the/etc/inittab file.

entry tag

The inittab entry associated withtag.

AUTHORS

Alastair Scobie <ascobie@inf.ed.ac.uk>

VERSION

0.100.2-1

The Complete Guide to LCFG (171)

The Complete Guide to LCFG Paul Anderson

B.24 install

LCFG install component

DESCRIPTION

This component controls which components are called at install time.

RESOURCES

installmethods

A list of install method tags to call in sequence to install a machine.

imethod tag

The install method associated withtag. Each method can be either an LCFG component call (to be passed to
om) or one of the following built-in operators.

In the following,targetrootis the path to the root of the target system.

%configclock% targetroot

Configures the /etc/sysconfig/clock file of the target system.

%gettime% rdate|ntpdate timeservers

Sets the system time using either rdate or ntpdate.timeserversis a list of servers to query.

%setclock%

Sets the hardware clock from the current system time.

%umount% targetroot

Attempts to unmount all mounted filesystems undertargetroot.

%settz% targetroot

Creates the target system’s /etc/localtime link. See thetimezoneresource.

%oneshot% param

Will eval the shell stringparam. The use of this operator is seriously frowned upon; it should only be
used for development purposes.

utc

If this value is set toyes, indicates that the hardware clock is kept in UTC. Set tono if not. Is used both for
the %configclock% built-in for setting the target system’s /etc/sysconfig/clock file and by the%setclock%
built-in for setting the current time.

timezone

This configures the timezone for the target system by linking the specified /usr/share/zoneinfo file to /etc/localtime.

PLATFORMS

Redhat9

AUTHOR

Alastair Scobie<ascobie@inf.ed.ac.uk>

VERSION

0.100.15-1

(172) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.25. inv

B.25 inv

LCFG inventory component

DESCRIPTION

Theseinv resources define the inventory information for an LCFG node. There is noinv component; the resources are
published to a spanning map which can be subscribed by other components such aslcfg-inventory. The inv resources
are also used by the server for publication on the HTML status pages.

RESOURCES

allocated

A space-separated list of users to which the machine is allocated.

cluster

The name of a spanning map to which the full inventory information should be published. The default is
inventory/all .

comment

A comment.

date

Date machine initially purchased or installed. Must be of the form dd/mm/yy with yy in the range 80-99 or
00-20.

display

A (space-separated) list ofinv resource names to be displayed on the server status page. Each name may be
prefixed with label= to set the label used to display the field (the resource name is used by default). Tilde
characters in the label are replaced with spaces to allow labels containing spaces to be specified.

domain

The domain name. Referenced from the profile by default.

location

The location of the machine.

maintainer

Information on the maintenance contract.

manager

A valid username who is responsible for management of the machine.

model

The model of the machine, eg. “Sun IPX” or “Dell Optiplex Gxa”. The first word of the model should be the
“make”.

node

The node name. Referenced from the profile by default.

os

A space-separated list list of operating systems running on the machine. The first should be the primary oper-
ating system.

The Complete Guide to LCFG (173)

The Complete Guide to LCFG Paul Anderson

owner

The group owning” the machine. Eg. “lfcs” or “cs”.

shortlist

The name of a spanning map to which short information should be published. This is not used by default.

sno

The serial number.

tags

A (space-separated) list of keywords for identifying different properties or groups of hosts. The keywords are
site specific.

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.3-1

(174) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.26. inventory

B.26 inventory

LCFG inventory component

DESCRIPTION

Theseinventory resources define the inventory information for a cluster of LCFG nodes. There is noinventory compo-
nent; the resources are normally subscribed from a spanning map which is published byinv resources on the individual
nodes. The special profile formatXMLInventory can be used to publish an XML copy of the complete inventory from
a source file such as /usr/lib/lcfg/source/inventory.

RESOURCES

allocated host host!inventory resource

Inventory resource forhost(seelcfg-inv).

cluster

The name of a spanning map from which the inventory information should be obtained. The default isinven-
tory/all .

comment host host!inventory resource

Inventory resource forhost(seelcfg-inv).

date host host!inventory resource

Inventory resource forhost(seelcfg-inv).

domain host host!inventory resource

Inventory resource forhost(seelcfg-inv).

hosts

The list of hosts in the inventory.

location host host!inventory resource

Inventory resource forhost(seelcfg-inv).

maintainer host host!inventory resource

Inventory resource forhost(seelcfg-inv).

manager host host!inventory resource

Inventory resource forhost(seelcfg-inv).

model host host!inventory resource

Inventory resource forhost(seelcfg-inv).

node host host!inventory resource

Inventory resource forhost(seelcfg-inv).

os host host!inventory resource

Inventory resource forhost(seelcfg-inv).

owner host host!inventory resource

Inventory resource forhost(seelcfg-inv).

The Complete Guide to LCFG (175)

The Complete Guide to LCFG Paul Anderson

sno host host!inventory resource

Inventory resource forhost(seelcfg-inv).

tags host host!inventory resource

Inventory resource forhost(seelcfg-inv).

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.3-1

(176) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.27. ipfilter

B.27 ipfilter

Filter rule collection LCFG component

DESCRIPTION

This component collects together the various exporting wishes as expressed in the lcfg and creates a configuration file
which will be passed on to the rest of the perimeter filtering mechanism.

RESOURCES

export

domain

Machines ask to export services by adding ”well-known” names to theexport list. (”Well-known” in the
sense that the machines which eventually have to generate the filter rulesets know what they mean!) They can
also declare themselves to be in a particulardomain , for the benefit of the DNS lookup that the filtering host
will eventually perform; this will most likely be set as a site default.

defaultDomain

If no domain is set then this is the default to use.

exporting

Some machine somewhere will want to gather together the published export lists. They’ll appear as the tag-list
exporting and corresponding valuesexport machineName.

exportexport

exportimport

These two resources form part of the spanning tree glue. Machines which intend exporting services should
set the former (it’s probably done by default). Machines which collect together the information for passing on
should set the latter.

AUTHORS

George Ross <gdmr@dcs.ed.ac.uk>

VERSION

0.0.21-1

The Complete Guide to LCFG (177)

The Complete Guide to LCFG Paul Anderson

B.28 iptables

Filter configuration LCFG component

DESCRIPTION

This component configures the iptables network filters.

RESOURCES

prechains

chains

postchains

The chains resource specifies which chains we want to add rules to. For each tag in the list, there’s a
correspondingrule tag resource giving the rule to be inserted, or alternatively arules tag resource giving
the rule file to be applied. Apolicy tag resource can also optionally be specified; the component checks at
configure time whether this is meaningful for the chain in question or not.

The prechains andpostchains resources specify additional chains which should be processed before
and after thechains chains respectively. It is expected that these will be set as system-wide defaults, rather
than for individual machines.

rules

One-off rules can be defined by making an entry in therules list, each tag of which should have a corre-
spondingrule tag entry giving the entry to be inserted in the generated script. These rules are then invoked
by adding ”@tag” to one of therules ... lists above. */

rulesetDir

The final output script is assembled from rules generated by the component itself and rules taken from ruleset
files in this list of directories.

configRun

It’s sometimes useful to have the configure method automatically run any new rule-file it generates. On the
other hand, it’s sometimes importantnot to have this happen. Setting this resource causes the file to be run;
otherwise it won’t be.

inif

outif

If set, define the machine’s (external) input and output interfaces respectively.

rsyncFiles

rsyncDir

We may want to rsync in some files first. Which? And where should we put them?

modules

Some kernel modules may have to be loaded first. Which?

mailto

We may want to send a helpful mail message if the rules change. This is where we should send it.

postProcess

This is the name of a postprocessing filter for the assembled rules. It’s unlikely that anything other than the
default would be appropriate here.

(178) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.28. iptables

AUTHORS

George Ross <gdmr@dcs.ed.ac.uk>

VERSION

0.0.77-1

The Complete Guide to LCFG (179)

The Complete Guide to LCFG Paul Anderson

B.29 irda

The LCFG IrDA component

DESCRIPTION

This component configures the IrDA subsystem.

RESOURCES

tty

The tty to use for the IR port. If this does not have the form ttyS*, it is assumed to be the name of an FIR
module.

AUTHORS

Alastair Scobie <ascobie@inf.ed.ac.uk>

VERSION

0.99.4-1

(180) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.30. kerberos

B.30 kerberos

LCFG Kerberos Component

SYNOPSIS

kerberosMETHOD[ARGS]

DESCRIPTION

An LCFG component that is used to configure and manage the MIT Kerberos service on clients and servers.

METHODS

The non-standard component methods are described below.

propagate

Propagate the current database to this hosts slaves. This method should be regularly called via cron on the
master KDC.

buildmaster

Create the master KDC. This method requires input from the user and for reasons of security should only be
run directly from the machine’s console.

gethostkey

Extract the host key for a given host. This method requires input from the user and as such should not be
executed when there isn’t a user connected to stdin.

makestash

Create a stash file for a slave KDC. This method requires input from the user and as such should not be executed
when there isn’t a user connected to stdin.

save

Save the current Kerberos data either as a K5 dump file, a K5 dump patch file, or a tar and gziped copy.

Takes one argument which is the level ranging from 0 to 8. A level 0 is a full copy, level 1 is a diff against
the most recent level 0, level 2 is a diff against the most recent level 1, etc. The level argument can also be the
stringcp to take a tar’ed and gzip’ed archive copy instead of a K5 dump. The directory the backups are saved
to is specified in thebackupresource.

K5 dump saves are done using the kdb5util command and are safe to run live. The tar’ed/gzip’ed copy is not
done live and so may be inconsistent if data is changing while it is being made.

This method can only be used on themaster server. It would normally be invoked automatically at different
times and levels via the cron component. All Kerberos save files (whether K5 dump orcp) should be kept at
the same level of security as the original live data.

load

Reload the current Kerberos data from a save file produced via the save method. Takes one optional argument
which is a timestamp filter. With no argument restores to the most recent K5 save. The timestamp argument has
the syntax [CC[YY[MM[DD[HH[MM]]]]]]]. For example, 200202 would restore to the most recent save for
Feb 2002, or 2002021211 would restore to the most recent save for Feb 12 2002 during the 1100 hours period.
This method cannot be used to restore from tar/gzip saves.

Invoking this method destroys the existing database and recreates it from the saved data. In some recovery
situations you may need to run thebuildmastermethod before doing the load.

This method can only be used on themaster server.

The Complete Guide to LCFG (181)

The Complete Guide to LCFG Paul Anderson

suspend

Used only on normally disconnected machines (such as laptops) this method will destroy any existing credential
cache files in /tmp.

check

Checks whether the root partition is filling up (if it reaches 100% then the KDC continues to respond to authen-
tication requests but with bogus information). If it reaches 90% full this method mails a warning. If it reaches
95% full this method mails a warning and attempts to free up space by deleting older log files. This method can
only be used on a master or slave server and would normally be called automatically from cron.

RESOURCES

The non-standard component resources are described below.

GENERAL CONFIGURATION

The following resources control the configuration of clients and servers.

type

Indicates the type of the machine. This can be eitherclient , offline , master or slave . Master and
slave configure the relevant KDCs, offline indicates that the machine is a client which spends time disconnected,
and so shouldn’t attempt to do updates when thestart method is called.

realm

The Kerberos realm that the machine inhabits.

createsasldb

Historical. If set, this will cause the machine to create an empty password database for Cyrus SASL. This
was required to allow the GSSAPI SASL mechanism to be used without the application complaining about an
empty database, but is uneccessary for newer version of SASL.

CLIENT CONFIGURATION

The following resources control the configuration of clients.

lifetime

Ticket lifetime (also used by the Krb5 PAM module as the renew lifetime).

tktenctypes

Supported encryption types for tickets.

tgsenctypes

Supported encryption types for the ticket granting service.

kdc

The addresses (in the form ofmachine:port) of KDCs for the default realm.

randomize

Indicates whether a client should randomize the KDC list before adding it to the configuration file. Use this
option with care. Having a KDC other than the master first in this list can cause problems when new services
are being installed, as the newly created keys won’t be available immediately on the slaves.

(182) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.30. kerberos

admin

The address (in the same form as the kdc address) of the admin server for the default realm.

domain

The default domain of this machine.

domainmap

A space seperated list of domains that should be mapped to this machines default realm.

hostkeyless

If set, disables the creation of a host key for this host. This can be used for lightweight clients, but may
have dramatic effects on machines that run Kerberized services, or that require the host key for machine based
authentication. Use with extreme care.

checksumtype

Historical. The type (currently numerical) of the checksum to use for mksafe operations. This was required to
make krb5-1.2.1 work correctly.

PAM CONFIGURATION

The following resources (in conjunction with some of the above) control the configuration of the Kerberos PAM service.

forwardable

Set totrue if the tickets requested by the Kerberos PAM module should be forwardable. Also makes tickets
acquired through kinit forwardable if set totrue .

krb4convert

Set totrue if the Kerberos PAM module should automaticaly convert Kerberos V tickets to Kerberos IV ones.

maxtimeout

timeoutshift

initialtimeout

Control the timeouts in establishing the connection to the KDC. See thepamkrb5manpage for more details.

addressless

Set totrue if the user should be given addressless tickets, that is ones that can be used from behind a NAT or
on a dialup host.

validate

Set totrue if the user’s TGT should be validated against a local service before allowing the user to login.
Setting this tofalse opens the machine up to a number of network based attacks.

requiredtgs

Historical. The name of a service who’s key is in the local keytab for which the user has to be able to gain
a ticket before being allowed to log in. The module’s default ofhost/ <hostname > should serve most
needs.

The Complete Guide to LCFG (183)

The Complete Guide to LCFG Paul Anderson

KEY EXTRACTION

The following resources control the automatic creation and extraction of host keys from the KDC to keytabs. This is
not the only place that this may occur, individual services may perform their own key extraction.

keys

A list of the keys to extract. These are assumed to be principal names, the actual key extracted will be
key/hostname@defaultrealm. If the keytabkey resource has no value these will be extracted to the default
keytab.

keytab key

The keytab to extractkeyto.

keytabuid key

The UID or username to own the keytab forkey. Note that if the same keytab is used for multiple keys, then the
last key to be extracted will determine the ownership of the keytab. Defaults to root.

keytabgid key

The GID or groupname to own the keytab forkey. Defaults to root.

SERVER CONFIGURATION

The following resources control the configuration of master and slave KDCs.

slaves

List of FQDNs of machines that slave from this one.

master

List(!) of FQDNs that this machine will accept KDC propagation requests from. There should obviously only
be one machine active at propagating at any one time, but this allows for easy recovery from a dead master
KDC.

masterkeytype

The type of the KDC master key. Do not change this on a running KDC, unless you are aware of exactly what
you are doing.

supenctypes

Encryption types that should be created for keys in the KDC.

kdcenctypes

Encryption types supported for authentication to the KDC.

acls

List of ACL rules for the kadmin server, used as keys for the acltag resource.

acl tag

Kadmin ACL list entry fortag. Together with theaclsresource, this builds the ACL control file. Entries are as
described in thekadmind(5)manpage.

krb524d

Whether to run the Kerberos4 compatibility daemon. Default is not to unless this resource has the valueyes .

(184) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.30. kerberos

directory

If the KDC type is a master and this resource has a value the physical content of/var/kerberos/krb5kdcis
relocated into the given directory and a symbolic link is made from/var/kerberos/krb5kdcto the new location.
This is only ever done once as part of thebuildmastermethod.

kdclog

Location that the KDC should log to.

adminlog

Location that the Admin Server should log to.

backup

Directory where the master servers database backup saves are stored.

mailcheck

mailcheckcc

Email addresses to send fault reports from thecheckmethod to.

LOCAL AUTHENTICATION

The following resources control the configuration of local authentication for operation when disconnected (or no route
to KDC).

rootpwd

A lauth crypted string containing the root password for the machine. This will probably eventually go away, in
favour of extracting this directly from the KDC.

localusers

A space seperated list of those users who are allowed to log in to this machine when it is disconnected. This is
used both on the client (to decide whether to extract keys) and on the key server (via an LCFG spanning map).

FILES

/etc/krb5.conf

/etc/krb5.keytab

/var/kerberos/krb5kdc/kdc.conf

/var/kerberos/krb5kdc/kadm5.acl

/var/kerberos/krb5kdc/kpropd.acl

/etc/localpasswd

/etc/localusers.conf

PLATFORMS

Redhat7 Redhat9

SEE ALSO

kdb5 util, kadmin.local, kprop, pwdclient, kdcpwdserver

The Complete Guide to LCFG (185)

The Complete Guide to LCFG Paul Anderson

AUTHOR

DICE Authentication and Authorization Team<auth-team@inf.ed.ac.uk>

VERSION

1.32.22-1

(186) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.31. kernel

B.31 kernel

LCFG kernel component

DESCRIPTION

This component configures kernel parameters via the/etc/sysctl.conf file. Any changes from the existing file
cause a reboot to take place. It also builds /boot/vmlinuz and /boot/initrd.img links, if required. It will also rebuild
kernel modules when certain rpms have been updated.

set

A list of variables to be set. Each entry requires an associated tag and value. Required.

tag X

The name of the kernel variable to be set. Required.

value X

The value to be assigned to X. Required.

mkkernellink

If this resource is non-null, the component will create a link/boot/vmlinuz to the current kernel.

mkinitrdlink

If this resource is non-null, the component will create a link/boot/initrd.img to the current initrd image.

kerneltype

Defines what version of the kernel to use. Default null value indicates the uniprocessor kernel. Set to SMP
for the SMP kernel and bigmem for a bigmem kernel. Note, this assumes standard Redhat kernel naming
conventions.

srcmodules

A list of modules to rebuild when certain rpms (eg the kernel) are updated. Typically these are kernel modules.

triggers module

A list of rpms that trigger a rebuild of the specified module if any of them are upgraded/removed etc.

script module

The filename of the script to build the specified module. It is called with a parameter ofinstall when the
module is being rebuilt, orremove if the module has been removed from thesrcmodules resource. If no
script is specified, the component will assume the script is called /usr/lib/lcfg/conf/scripts/module.

AUTHORS

Alastair Scobie <ascobie@inf.ed.ac.uk>

VERSION

0.101.6-1

The Complete Guide to LCFG (187)

The Complete Guide to LCFG Paul Anderson

B.32 ldap

LCFG LDAP Component

SYNOPSIS

ldapMETHOD[ARGS]

DESCRIPTION

An LCFG component that is used to configure and manage the OpenLDAP service on clients and servers.

METHODS

The non-standard component methods are described below.

kick

Force the LDAP server to replicate from its master. By default this does not delete any entries that have been
deleted on the master.

Supplying thehard argument will cause deletions to be performed too. Deletions may take a considerable
amount of time, and significantly increase the load on the LDAP master.

autokick

Normally called from a crontab entry. The intention is to trigger a normal kick hourly (at a random number of
minutes past the hour based on host ip) and do a hard kick daily (at a random hour based on host ip). However,
arguments to this method allow the timing of normal and hard kicks to be adjusted for more or less frequent
replication. The way this method works is unfortunately rather tied to the way that the LCFG cron component
works. For the default behaviour there should be a crontab entry set to call this method hourly at the same
exact random number of minutes past the hour (this can be achieved via the LCFG cron component by using
an AUTO value for minutes since this calculates a random number from an IP in the exact same way as this
component).

This method takes two optional arguments, a fixed hour (or AUTO) and a fixed number of minutes past the hour
(or AUTO). For example to run the hard kick at 2pm (overriding the randomly chosen hour) doautokick 14 ;
to run the normal and hard kicks at 5mins past the hour (overriding the randomly chosen minutes past the hour)
do autokick AUTO 5 ; to set both values you can doautokick 14 5 (so run the normal kick hourly at
five minutes past the hour and the hard kick daily at 14:05). Note that compatible adjustments must also be
made to the crontab entries. To have the normal kick every two hours instead of every hour but keep the hard
kick daily you would call this method with the args14 AUTOand haveAUTO */2 * * * * as the crontab
entry (whereAUTOin both cases is replaced by the same number if not using the LCFG cron component).

We really need a better way to do all this, possibly by improvements to the LCFG cron component, or by getting
ldapreplicate to handle the automatic replication by daemonizing and controlling the timing without using cron.

rebuild

Force the LDAP server to delete all of its data and re-replicate from the master. This method can only be used
on a slave server. Useful if database corruption is suspected.

save

Save the current LDAP data as an LDIF file or LDIF patch file. Takes one argument which is the level which can
be from 0 to 8. A level 0 is a full copy, a level 1 is a diff against the most recent level 0, a level 2 is a diff against
the most recent level 1 etc. The level argument can also be the stringcp to take a tar’ed and gzip’ed archive
copy instead of an LDIF dump. The directory these files are saved into is specified in thebackupresource.

Saves are currently done live (without stopping slapd) so may contain inconsistency if the data was being
updated at the same time as the save.

This method can only be used on the master server and would normally be called automatically at different
times and levels via the cron component.

(188) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.32. ldap

load

Reload the current LDAP data from a save file produced via the save method. Takes one optional argument
which is a timestamp filter, without this argument the most recent LDIF save will be restored.

The timestamp argument has the syntax [CC[YY[MM[DD[HH[MM]]]]]]]. For example, 200202 would restore
to the most recent save for Feb 2002, or 2002021211 would restore to the most recent save for Feb 12 2002
during the 1100 hours period. This method cannot be used to restore from tar/gzip saves.

This method stops the slapd process, deletes any current data, restores data and restarts the slapd process. The
LDAP directory will be unavailable whilst the load is being carried out.This method can only be used on the
master server.

check

Checks whether the slapd process has stopped running when the component status indicates that it should be
running (this would be the case if it has crashed for some reason). If so it restarts it and mails a fault report.
This method can only be used on a master server and would normally be called automatically from cron.

RESOURCES

The non-standard component resources are described below.

CLIENT CONFIGURATION

The following resources control the configuration of clients.

These items configure the client’s default LDAP server. The default is not universally used, in particular only those
tools built on the OpenLDAP C libraries will pay attention to this section of configuration.

server

The address of the LDAP server the machine should query.

searchbase

The base DN for searches on that server.

ldapversion

The LDAP version to use for queries.

binddn

The DN to bind to the server as (uses an anonymous bind if this is omitted).

bindpw

The password to use if the bind is not anonymous, and requires a password.

SERVER CONFIGURATION

The following resources control the configuration of servers.

type

Type selects which mode the LDAP server is running in:

master

LDAP server is domain master. A minimal initial dataset is loaded from the file given in theinitialldif
resource. No other data is loaded.

The Complete Guide to LCFG (189)

The Complete Guide to LCFG Paul Anderson

slave

LDAP server is a slave. The initial dataset is loaded by means of an ldapsearch from the domain master.
Further replication is determined by the contents of thereplmethodresource.

client

No LDAP server is run.

MASTER SERVER CONFIGURATION

The following resources are specific to the configuration of the master server.

initialldif

The name of a file in /usr/lib/lcfg/conf/ldap holding a minimal initial data set in LDIF format to bootstrap the
master server. Default isroot.ldif.

backup

Base directory where the master servers database backup saves are stored. They are stored in thenew sub-
directory of this which holds the most current backup files and is kept to a certain size controlled by the
backupmaxandbackupminresources and theold sub-directory where older backups are kept forever (they
must be manually cleared if filespace is needed). Generally thenew sub-directory would be expected to be
backed up onto an offline medium and/or mirrored onto another machine.

backupmax

Maximum size of thenew backup directory (in 1K blocks). When this size is exceeded (on doing a backup)
it triggers a move of files out of thenew backup directory and into theold backup directory. This file move
continues until the size of thenew backup directory falls below the value of thebackupminresource (see
below).

backupmin

Minimum size of thenew backup directory (in 1K blocks). Files are only moved out of thenew backup
directory until this minimum size is reached. Depending on the average backup size and frequency and level
configuration of backups this determines the scope of thenew backup directory, ie. the time period backups in
new cover.

mailcheck

mailcheckcc

Email addresses to send fault reports from thecheckmethod to.

GENERAL SERVER CONFIGURATION

The following resources are for the configuration of all servers.

directory

The directory in which the LDAP database is stored. Defaults to /var/lib/ldap

configtemplate

Name of the file in /usr/lib/lcfg/conf/ldap which is the slapd.conf template for pre-processing bysxprof(8).
Defaults toslapd.conf.tmpl.

logfacility

Name of the syslog facility to which logging should be performed.

(190) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.32. ldap

loglevel

The level at which logging should be performed. The slapd.conf(5) manpage provides details of what informa-
tion is provided at each level.

ldapschemas

List of schemas to include in the slapd configuration. If the schemafileTAG resource is present this contains
the name of the file to use, otherwise it defaults to/etc/openldap/schema/TAG.schema.

schemafile TAG

Filename of schema file to use forTAG.

writemaster

The host that LDAP update requests on a slave server should be referred to using the DN in thedbrootdn
resource to make the actual update. Should be empty on the master server.

allowv2

Set to a non-null value to allow LDAP v2 binds.

aclfile

The name of the file in /usr/lib/lcfg/conf/ldap containing ACLs for the directory service.

changelogdn

If present, turns on in-directory changelogs, storing them in the location given. Changelogs are needed for
internal trigger support.

dbsuffix

Naming suffix of the database that the LDAP server stores. Will generally be the same assearchbase.

dbtype

Type of backend database. Generallybdb or ldbm .

dbrootdn

RootDN of the database. On a slave, this should be the DN used by the replication agent which copies content
into the database, on the master it should be the DN which has ’super user’ access to the database, or a non-
existent DN to disable this form of access.

indices

List of attributes which should be indexed. Note that changing this list will trigger a database shut down and
index rebuild. Depending on the complexity this may take a large amount of time.

indextype TAG

List of the indices to maintain for attributeTAG. See the slapd.conf(5) manpage for more details.

sizelimit

timelimit

idletimeout

See the slapd.conf(5) manpage for details.

lastmod

checkpoint

See the slapd-bdb(5) manpage for details.

bdb cachesize

The Complete Guide to LCFG (191)

The Complete Guide to LCFG Paul Anderson

bdb lg regionmax

bdb lg bsize

bdb lg dir

These backend specific resources set the corresponding parameters in the main database’s DBCONFIG con-
figuration file. See the BDB documentation for more details.

saslrealm

The default realm for all SASL operations against the server

REPLICATION SERVER CONFIGURATION (slurpd)

The following resources control how the server makes its information available to replication agents using slurpd.

slurp

If yes manage the starting and stopping of the slurpd process.

slaves

List of FQDNs of machines that are slurpd slaves of this one.

replicaconf

List of additional configuration to add to the replica line for each slurpd slave.

REPLICATION CLIENT CONFIGURATION

These resources control how a slave server replicates from another server (normally the master server).

replicatype

The type of replication in use. Currently the only supported option isldapreplicate .

master

Name of the server to fetch the initial LDAP configuration from. This doesn’t have to be the master LDAP
server for the domain. When the server type is aslave this controls the server that the machine is replicated
from.

FILES

/etc/ldap.conf

/etc/openldap/ldap.conf

/etc/openldap/slapd.conf

/etc/openldap/schema/*

PLATFORMS

Redhat9

SEE ALSO

ldapreplicate, slapd, slurpd, slapadd, slapcat, slapindex

(192) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.32. ldap

AUTHOR

DICE Directory Service Team<dirservices-team@inf.ed.ac.uk>

VERSION

2.0.28-1

The Complete Guide to LCFG (193)

The Complete Guide to LCFG Paul Anderson

B.33 localhome

LCFG localhome component

DESCRIPTION

This objects builds the local home directories for those users listed in theusers resource. It also builds an automount
map for these directories, with a redirect (redirect resource) for users who aren’t listed in theusers list.

RESOURCES

users

Specifies which users should have local home directories. Groups of users can be added by prefixing a netgroup
name with an @ symbol.

virtual

The virtual name of the directory containing the local home directories. Defaults to/localhome . This name
links to the directory specified by thephysical resource.

physical

Specifes the real directory in which the local home directories should be created.

redirect

Used when generating the automount map to specify the default destination for users not listed in theusers
resource.

mapfile

The filename of the generated automount map. If empty it will default to/var/lcfg/conf/amd.localhome.map .

maptype

The type of automounter map which should be created. Defaults toamd.

grouphelper

The shell command that will take the name of a group as an argument and return a list of users in that group. For
each group mentioned in theusers resource the characters ’%s’ will be replaced by the name of that group.
An example command might be

/usr/bin/netgroup -U %s

PLATFORMS

Redhat7, Redhat9

AUTHOR

Alastair Scobie<ascobie@inf.ed.ac.uk>, Ken Dawson<ktd@inf.ed.ac.uk>

VERSION

2.0.9-1

(194) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.34. logserver

B.34 logserver

LCFG logserver

DESCRIPTION

This component serves log files and other information about LCFG components via HTTP. The HTTP server listens on
port lcfglog (default 734), and provides information on the following URL pathnames:

profile/component.html

The resource values from the current profile in HTML.

profile/component.txt

The resource values from the current profile as a text file.

profile/long/component.html

The resource values from the current profile with full details, as an HTML file.

status/component.html

The resource values from the current status in HTML.

status/component.txt

The resource values from the current status as a text file.

status/long/component.html

The resource values from the current status with full details, as an HTML file.

log/component.html

The current log file in HTML.

log/component.txt

The current log file as a text file.

err/component.html

The current error file in HTML.

err/component.txt

The current error file as a text file.

warn/component.html

The current warning file in HTML.

warn/component.txt

The current warning file as a text file.

doc/component.html

The documentation in HTML.

doc/component.pod

The documentation in pod format.

The Complete Guide to LCFG (195)

The Complete Guide to LCFG Paul Anderson

RESOURCES

block

A space-separate list of components whose log files should not be published. Typically used on servers to
prevent publication of sensitive log files such as authorization.

components

The list of components for which logfiles should be published (unless specified in the block list).

logrequests

True to log all requests.

maxlines

The maximum number of lines to display in one HTML log page (default 500).

statusurl

The root of the URL used to access the server status page for this client. The domain name and hostname are
appended to this base to create the link to the status page (default http://lcfg/status).

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.12-1

(196) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.35. lprng

B.35 lprng

The lcfg lprng component

DESCRIPTION

Component to start, stop and configure the lprng lpd daemon.

RESOURCES

printers

A list of print queues spooled from this server.

debug

The numeric debug value to pass to lpd with the-D flag.

owner

The user/uid that the lpd daemon runs as.

kerbprinc

A boolean value indicating whether this machine requires an lpr kerberos principal.

localname

Local printing only. Name of queue for local printer (will default to ’local’ but can be overridden in by user-
maintained profile), e.g. lprng.localname[localprinter=myprinter] myname

localsendto

Local printing only. Specifies exactly where the print job is to be sent (e.g. /dev/lp0 for a locally attached
parallel printer, /dev/usb/lp0 for USB, or smbprinter@smbhost.somewhere.org for a networked printer). This
resource essentially equates to the lp= bit of the printcap entry.

localformat

Local printing only. Output format of the printer - formats currently supported are Postscript and Ghostscript.
The latter refers to any format that will be converted to from Postscript, by gs.

localopts

Local printing only. Additional colon-separated options needed by printing system. The options supported here
depend on the format of the printer (e.g. For a Postscript printer, we need to know the ppd file to use, for an
Inkjet we might need colour options, or the ’device’ name) and need to be supported by the backend. It could
be something along the lines of (for a Deskjet) ”device=deskjet,colour=CMYK”

localpcap

Provided to override printcap options if required. e.g. if it was set to if=/path/toby/my/filter:sh:sf then those
printcap entries only would be overridden.

METHODS

start

stop

configure - The configure method performs the following steps - (1) checks that the appropriate spool directories are in
place, with the appropriate permissions and creates/modifies them if not; (2) performs any necessary steps relating to
the creation and registration of an lpr server principal.

The Complete Guide to LCFG (197)

The Complete Guide to LCFG Paul Anderson

NOTES

This component assumes that the rest of LPRng is installed and configured appropriately. When adding a new printer,
the queuename should be added to theprinters resource as the final step - printcap information must be in place prior
to this.

AUTHORS

Toby Blake <toby@inf.ed.ac.uk>

VERSION

0.99.38-1

(198) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.36. mailng

B.36 mailng

LCFG mail component.

DESCRIPTION

This component configures the sendmail (client only) service.

RESOURCES

aliasfile

The full pathname of the AliasFile parameter for the sendmail.cf file.

daemon

If this option if non-null, then the sendmail daemon will listen on the SMTP port for connections. The
run daemon option must be set for this option to be useful.

daemonportoptions

Normally used by the sendmail.cf template to set the DaemonPortOptions field. The default is to only accept
connections from localhost.

local

Normally used by the sendmail.cf template to set the DH field.

mctmpl

If this resource is present, the sendmail.cf template (smtmpl) is created by first passing this file throughsxprof
and then m4.

mode

Normally used by the sendmail.cf template to set the deliverymode (default ”background”). Set this to ”q” to
have mail dumped in the queue rather than being delivered immediately. Useful for portables when talking to
SMTP servers that are very slow to respond.

poll

If this option is set, then the sendmail daemon will poll the mail queue at the specified intervals (default ”1h”).
You probably want to set this to some small value (30s?) when using queued delivery mode. Therun daemon
option must be non-null for this option to be useful.

relay

Normally used by the sendmail.cf template to set the DS field.

run daemon

Set this non-null to run a sendmail daemon. This is required if either thedaemon or poll options are set.

smtmpl

The sendmail.cf template. The sendmail.cf file is created by passing this template throughsxprof with all
mailng resources defined. If this is null, then the sendmail.cf is not changed.

smconfig

Where to put the processed sendmail template file. If this is null, then a warning is logged and no sendmail.cf
file is produced.

Dealing with root mail

The Complete Guide to LCFG (199)

The Complete Guide to LCFG Paul Anderson

rootmail

A space separated list of email addresses that root mail should be copied to. This only has an affect if the mail
server that actually receives root mail is running therootredirect script.

cluster

The identifying spanning map cluster that this rootmail belongs to.

SEE ALSO

rootredirect(8)

AUTHORS

Paul Anderson <paul@dcs.ed.ac.uk>
Neil Brown <neilb@inf.ed.ac.uk>

VERSION

1.7.3-1

(200) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.37. network

B.37 network

LCFG network component

DESCRIPTION

This component configures the/etc/sysconfig/network-scripts configuration files and/etc/hosts .

offline

This resource, if set toyes , stops the object from making any configuration changes when thestart method
is invoked. This is handy for portables where therun method is user invoked to make configuration changes.

interfaces

A list of ethernet interface names. Each interface must have the following tagged resources.

hostname interface

This resource specifies the hostname for this interface.

device interface

This resource specifies the ether device for this interface. The default value ofauto indicates that the ether
device is set to the tag keyinterface.

ipaddr interface

This resource specifies the IP address for this interface. The default value ofauto indicates that the component
should attempt to resolve the IP address.

netmask interface

This resource specifies the netmask for this interface.

network interface

This resource specifies the network for this interface. The default value ofauto indicates that the component
should derive the network from the IP address. A class C address is currently assumed.

broadcast interface

This resource specifies the broadcast address for this interface. The default value ofauto indicates that the
component should derive the broadcast address from the IP address. A class C address is currently assumed.

onboot interface

This resource specifies whether this interface should be configured at boot time. The default value is ”yes”.

bringup interface

This resource specifies whether this interface should be brought up manually by the network component at start
time. This is useful for interfaces that aren’t prepared at system boot time (eg VLANs). The default value is
”no”.

hostsorder interface

This resource specifies which form of hostname is entered into the/etc/hosts file. The valuefull spec-
ifies that the fully qualified name should be entered, while the valueshort specifies that just the simple
hostname should be entered. Both values can be specified, with order being significant.

extrahosts

A list of additional entries for the/etc/hosts file. Each entry should have the formhentry tag.

hentry tag

The value for the/etc/hosts entry denoted bytag.

The Complete Guide to LCFG (201)

The Complete Guide to LCFG Paul Anderson

gateway

A list of gateways for this machine. The actual gateway used will be chosen randomly from this list.

gatewaydev

The ethernet interface to use to communicate to the default gateway.

hostschangereboot

This resource specifies whether changes to/etc/hosts should trigger a reboot. The default value is ”yes”.

AUTHORS

Alastair Scobie <ajs@dcs.ed.ac.uk>

VERSION

1.99.8-1

(202) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.38. nfs

B.38 nfs

LCFG nfs component

DESCRIPTION

This object configures the NFS service. It creates the list of exported filesystems and their mount options and saves
them in the relevant exports file.

NB: it does not start NFS - this is done outwith the lcfg system.

exports

A list of filesystems to export.

fs fsys

The pathname of the filesystem to export for this tag.

fs foptions

The mount options for the named filesystem.

FILES

/etc/exports

AUTHORS

Alastair Scobie <ascobie@inf.ed.ac.uk>, Jeremy Olsen <J.Olsen@ed.ac.uk>

VERSION

1.0.2-1

The Complete Guide to LCFG (203)

The Complete Guide to LCFG Paul Anderson

B.39 ngeneric

LCFG new generic component.

DESCRIPTION

This component is intended for inclusion by other LCFG components. It provides a supporting framework including
default methods and utility functions.

The components should include/usr/lib/lcfg/components/ngenericand call theDispatch function with the command
line arguments. The lcfg componentexampleshows how this is used in practice.

FUNCTIONS

Components can override the following functions:

Configure

This routine is called when theconfigure method, is invoked, as well asstart andrestart. ngenericwill have
placed the values of all resources into the environment with variable names of the formLCFGresource.

This routine should (re)create any necessary configuration files, and restart or signal any affected daemons. It
is up to the component to determine which (if any) individual resources have changed and to minimize the
reconfiguration appropriately (the template processor can help with this).

The component should call Fail() if the reconfiguration fails.

Start

This routine gets called when thestart or restart methods are invoked, either manually, or at boot time.Con-
figure will be called beforeStart leaving the resources available in the environment.

The component should override this routine to start any necessary daemoms.

Stop

This routine gets called when a component is stopped, either manually, or at shutdown time (or for a restart).
The component should override this routine to stop any necessary daemons. When the routine is called, ngeneric
will have placed the configuration (as saved at the last configure) into the environment.

Run

This routine gets called when therun method is invoked. The component should override this routine to
perform any necessary operations. When the routine is called,ngenericwill have placed the configuration (as
saved at the last configure) into the environment.

LogRotate

This routine gets called when thelogrotate method is invoked, normally by the logrotate script when the logfile
has been rotated. The component should override this routine to arrange for any running daemons to release the
logfile. The environment contains the configuration saved at the last configure/start.

Suspend

Take any APM suspend action. The environment contains the configuration saved at the last configure/start.
This routine is not protected by the normal semaphore.

Resume

Take any APM suspend action. The environment contains the configuration saved at the last configure/start.
This routine is not protected by the normal semaphore.

Reset

Reset the error and warning status files. The existence of these files determines the status of the error and
warning icons on the server status page. These files are deleted when the component starts.

(204) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.39. ngeneric

Status

Display status information. The environment contains the configuration saved at the last configure/start. The
default routine displays the values of the resources at the last configuration.

Log

Display log information. The environment contains the configuration saved at the last configure/start. The
default routine displays the current logfile.

Monitor

Report monitoring information (by callingNotify) for the tag specified by the first argument. The environment
contains the configuration saved at the last configure/start. The default routine reports an error.

INPUT/OUTPUT

Components should avoid writing to STDOUT/STDERR since this may be lost, or may clutter the startup screen.
The functions Debug(), Info(), Warn() and Fail() should be used to output short messages. By default, STDERR and
STDOUT are redirected to the component logfile. The file descriptors 11 and 12 are opened on the original STDOUT
and STDERR respectively for those cases where a method absolutely needs to write to these channels - for example to
print a console prompt, or to perform a Log() or Status() method.

RESOURCES

Some component resources are interpreted by the ngeneric component or the LCFG client. The names of these resources
all begin withng and care should be taken not to use these names for other purposes:

ng cfdepend

This resource is interpreted by the LCFG client to determine which components should be reconfigured when re-
sources change. The resource should include a list of dependencies of the form>componentor <component.
In the first case, the specified component will be reconfigured whenever the resources of this component change.
In the second case, this component will be reconfigured whenever the resources of the specified component
change. The default is<self.

ng cforder

The client default file specifies that the server should use this resource to order theclient.componentslist.
(Theclient.componentsresource specifies the order in which components should be reconfigured after a con-
figuration change.)ng cforder specifies a list of constraints on the the order in which the components are
reconfigured. A constraint of the form>compmeans that this component must be configured aftercomp.
Similarly, <compmeans that this component must be configured beforecomp.

ng debug

Set the DEBUG variable.

ng extralogs

A list of extensions for any additional logfiles to be rotated.

ng logrotate

A list of tags representing additional lines to be inserted in the logrotate file.

ng logrotate tagtag!ngeneric resource

The logrotate line corresponding totag.

ng monitor

If this facility is set to the name of a file, then all errors, warnings and monitoring information will be appended
to the named file, if it exists. This is typically set to a named pipe (eg./var/lcfg/tmp/monitor.fifo
to transmit information to a monitoring system (eglcfg-pemsensor).

The Complete Guide to LCFG (205)

The Complete Guide to LCFG Paul Anderson

ng prod

If this resource changes, the client will call the method specified byng prodmethod instead of callingng reconfig.
The value of the resource is specifically unused. This can be used to force one-off execution of a particular
method. For example, by settingng prod to some new value (typically a timestamp) andng prodmethod to
restart, the component will restart when the new profile is received.

ng prodmethod

The component method to call to ”prod” the component.

ng reconfig

This resource is interpreted by the LCFG client to determine the method to call when the component resources
have changed.

ng statusdisplay

If this resource istrue then the component will appear in the server status display. (default is true). If it has
the valuenocomp, then the component is assumed to be a ”pseudo component” with no corresponding running
code - in this case, no client acknowledgements are expected, and the component shows as ”ok”, rather than
”unknown”.

ng syslog

If this variable is set to the name of asyslogfacility (eg. local3), then all error and warning messages will be
copied to syslog with the specified facility.

ng verbose

Set the VERBOSE variable.

LOCKING

ngeneric useslcfglock to create a semaphore on all method calls (with the exception of those noted above). The method
unlock can be used to force the removal of the lockfile.

LOG ROTATING

When theconfiguremethod is called,ngenericwill look for a logrotate configuration file in/usr/lib/lcfg/conf/ component/logrotate .
This is passed through the template proprocessorsxprof to allow per-machine configuration.

If the component does not provide a logrotate file, the ngeneric logrotate file is used. This rotates the component logfile
at some default interval and calls the componentlogrotate method in the postrotate script. The default logrotate file
allows extra parameters to be added directly from component resources using thelogrotate resource. Eg:

foo.logrotate a b
foo.logrotate_a daily
foo.logrotate_b rotate 7

VARIABLES

ngeneric creates local shell variables beginning with ””. The following variables may be of general use:

COMP

The name of the current component.

DEBUG

Enables debugging information. Set by a-D option.

(206) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.39. ngeneric

DUMMY

Normally used to perform a dummy execution of the method call for testing. Set by a-d option.

LOGFILE

The name of the log file.

NOSTRICT

Method specific flag, normally used to force a less strict interpretation of method semantics. For example, the
start method will exit silently if the component is already running, rather than fail.

OKMSG

The message to be displayed when the method completes sucessfully. Components may append a string of the
form {\tt (}{\em message}{\tt)} to this variable, to display additional status information when the method
exits.

QUIET

Disables unnecessary messages, including the ”OK” message. This is useful when calling components from
cron. Set by a-q option.

STATUSFILE

The name of the status file.

TIMEOUT

The lock timeout (in seconds). Set by a-t option.

VERBOSE

Enables additional informational messages. Set by-v option.

AD-HOC METHODS

It is possible to create additional ad-hoc methods. These should be exported with names of the formMethod methodname,
and they will be automatically called by the Dispatch function. Ad-hoc methods should arrange to call theLock function
if appropriate to prevent simultaneous method calls.

SEE ALSO

lcfg-example

An example component.

sxprof

The template processor.

AUTHORS

Paul Anderson <dcspaul@inf.ed.ac.uk>

VERSION

1.1.23-1

The Complete Guide to LCFG (207)

The Complete Guide to LCFG Paul Anderson

B.40 nscd

LCFG NSCD Component

SYNOPSIS

nscdMETHOD[ARGS]

DESCRIPTION

An LCFG component that is used to configure and manage NSCD, the Name Service Cache Daemon.

METHODS

The component only has standard methods.

RESOURCES

The non-standard component resources are described below.

threads

The number of threads that the daemon should use (optional).

maps

A space seperated list of the maps that the daemon should manage. Currently onlypasswd , group and
hosts are supported by NSCD.

positivettl map

The time-to-live for successful matches in the given map in seconds.

negativettl map

The length of time to cache failed lookups in the given map for in seconds.

suggestedsize map

The suggested size of the cache for a given map. This should be a prime number.

checkfiles map

Whether to check the standard file for a given map to determine whether to invalidate all cache entries. Should
be eitheryes or no .

FILES

/etc/nscd.conf

PLATFORMS

Redhat9

SEE ALSO

nscd

(208) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.40. nscd

AUTHOR

DICE Directory Service Team<dirservices-team@inf.ed.ac.uk>

VERSION

1.5.5-1

The Complete Guide to LCFG (209)

The Complete Guide to LCFG Paul Anderson

B.41 nsswitch

LCFG nsswitch component

DESCRIPTION

This object constructs an nsswitch.conf file from information in the LCFG database.

maps

A list of the maps which should be included in the nsswitch.conf file

mods map

A list of modules for each map. These are nsswitch modules such as ”files” ”nis” ”ldap” and the like. The
ordering should be as required in the file.

AUTHORS

Alastair Scobie <ajs@dcs.ed.ac.uk>

VERSION

0.100.6-1

(210) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.42. ntp

B.42 ntp

The LCFG NTP component

DESCRIPTION

This object constructs all the necessary configuration files and starts thentp time daemon.

The run method will run ntpdate and set the hardware clock, provided that therun daemon resource was not set
and so no daemon was started. This is useful on laptops, where a network connection may be unavailable or it may be
undesirable to bring one up.

RESOURCES

run daemon

This resource should be set to enable thentp daemon. It should normally be set to on permanently connected
machines and not set on normally disconnected machines (e.g. laptops). If no daemon is started then the
component’srun method can be used to resynchronise the machine’s clock.

servers

A (space-separated) list of NTP servers.

peers

A (space-separated) list of NTP peers.

restrict default

restrict policy

restrict localhost

Access restrictions to apply.restrict default specifies what the global default is.restrict policy
allows for separate site-specific restrictions to be applied.restrict localhost specifies what restrictions
to apply to other things running on the machine itself. The component itself will inject its own appropriate
restrictions for any configured servers and peers.

NOTE: if you don’t specify a value forrestrict default andrestrict localhost then those re-
strictions are turned off. If no value is specified forrestrict policy then no restriction or unrestriction
statement is generated in the daemon configuration.

minpoll

maxpoll

These two set the minpoll and maxpoll values for all the configured servers and peers. See the documentation
in the ntp distribution for full details. The daemon will operate quite happily without these being set, so if in
doubt leave them alone.

contextlabel

This resource does not actually affect the operation of the component, but instead is included in some of its
messages. Setting it to some lcfg context-specific value might therefore be useful to the user.

configfile

The name of the daemon’s (generated) configuration file.

driftfile

The name of the daemon’s drift file.

The Complete Guide to LCFG (211)

The Complete Guide to LCFG Paul Anderson

pidfile

The name of the file into which the daemon should write its pid.

ntpd

The name of the daemon program.

ntpd flags

Additional command-line flags to pass to the daemon.

ntpdate

The name of thentpdate program.

tickadj

The name of thetickadj program.

raiseprio

Should the component attempt to raise the daemon’s priority, so that other processes interfere less with time-
keeping?

logconfig

Should the daemon do any logging? The value of this resource should be a list of valid logconfig keywords.
If it’s not set then no logging is done. See the standard NTP web documentation for details of what’s required
here.

statistics

statsdir

filegen ...

Should the daemon collect statistics?statistics says which we should collect, if any.statsdir says
where they should go.filegen thing which says how that particular statistic is to be handled. See the
standard NTP web documentation for details of what’s required here.

monitor

Should the daemon keep track of protocol requests, to be queried usingntpq ’s monlist command?

getaddr

A helper program used by the component itself. Do not set this resource unless you know what you’re doing.

PLATFORMS

RedHat 7, RedHat 9. Previous versions ran on Solaris 2.6.

AUTHORS

George Ross <gdmr@inf.ed.ac.uk>

VERSION

2.1.13-1

(212) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.43. pcmcia

B.43 pcmcia

LCFG pcmcia component

DESCRIPTION

This object configures and starts the PCMCIA system.

pcic

The type of PCMCIA controller chip for this machine.

pcic opts

Loadtime options for the PCMCIA controller kernel module.

core opts

Loadtime options for the PCMCIA core kernel module.

cardmgr opts

Loadtime options for the PCMCIAcardmgr daemon.

config opts

A list of line tags for the/etc/pcmcia/config.opts file.

conf tag

The/etc/pcmcia/config.opts line associated withtag.

suspend restart

If set toyes , the pcmcia service will be stopped on suspend and (re)started on resume.

AUTHORS

Alastair Scobie <ascobie@inf.ed.ac.uk>

VERSION

0.100.2-1

The Complete Guide to LCFG (213)

The Complete Guide to LCFG Paul Anderson

B.44 perlex

An example LCFG component in Perl

DESCRIPTION

This component is an example only.

RESOURCES

server

An example resource which gets substituted into the configuration file.

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.3-1

(214) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.45. profile

B.45 profile

Client resources used by the LCFG server

DESCRIPTION

There is no LCFGprofile component, butprofile resources for an LCFG client are used bymkxprof when compiling
a client profile. Every client whose profile is to be generated bymkxprof (lcfg-server) must have a set ofprofile
resources.

RESOURCES

acl access fileaccess file!profile resource

An Apache ”allow from ” specification for the access file corresponding toaccessfile, specifying hosts which
should be permitted to access this profile without authentication.

auth

A list of tags representing Apache web access files to be created in the profile directory for this host.

authorize

The name of a Perl module to use for default authorization (for example byom). This is not used by the
client, or the server; it simply provides a common source of reference for other components. The default is
LCFG::Authorize .

comment

A comment for inclusion on the server status page.

components

A space-separated list of components whose resources are to be included in the profile. mkxprof wil not
generate profiles for components not specified in this resource.

domain

The client domain. This defaults to the same domain as the server.

file access fileaccess file!profile resource

The name of the Apache access file for the givenaccessfile. Normally, this will be.htaccess, but Apache may
be configured to use multiple different access files in different circumstances: for example, a different access
file may be used for SSL and plain HTTP.

format

This resource specifies the name of the Perl module used to generate the profile. This can be used to generate
profiles in different formats. The only format currently supported (and the default) is XML.

group

An (optional) three digit numeric order number, followed by a title string. Hosts are grouped bygroup in the
server status display. The title string is the title for the display section and the order number is used to sort the
sections. By default, the group is set to the domain, and the order number is 100.

maxupdate

The maximum time expected between package updates on the client. A warning icon will be displayed on the
status page, if the client has not performed a successful package update within the lastmaxupdate. The value
of the resource should be an integer, followed byh (hours).

node

The client node name (host name). This defaults to the name of the source file.

The Complete Guide to LCFG (215)

The Complete Guide to LCFG Paul Anderson

notify

If this resource is true, a UDP notification wil be sent to the node whenever the profile changes.

packages

A list of package specifications (eg. RPMs) to be included in the profile. Each specification may be either:

A ”package list” file

The specification is the name of the file, proceeded by@. The file should contain a list of package names of
the formname-version-release{:options}, optionally proceeded by+ or -.

A package name

Of the formname-version-release{:options}, optionally proceeded by+ or -.

A tag name

This is tag for a resource name of the formprofile.packagestag which is assumed to contain further package
specifications (these can be nested to an arbitrary depth).

Package specifications occuring either in a resource value, or in a file may be followed by a context specifier in the
usual form. Context specifications are not permitted on the tagged resources, or on filenames.

passwd

The passwd for web access. This is entered into the password database which is referenced by the access
control file to protect the directory containing the profile. This resource is cached separately by the client so
that it is only available to root processes. The value is returned as ”****” by the client libraries if it set, and
null otherwise.

pwf access fileaccess file!profile resource

The name of an Apache DB password file which will be used to to authenticate profile requests when the access
control conditions are not satisified (seeacl accessfile), or not present. The client will attempt connections
using the FQDN of the host as the username, and the value of theprofile.passwdresource as the password.
The special valueauto can be supplied in which case the server will use the password file created automatically
from theprofile.passwdresources.

release

The configuration release. This value will be substituted for the string%r in the pathnames of any directories
included by the server. If this is null, the stringdefault will be substituted.

rungroup

The groupname under which the LCFG system runs by default on the client.

runuser

The username under which the LCFG system runs by default on the client.

softrelease

The expected software release version on the client. If this resource is present, then a warning icon will be
displayed unless the release string matches the contents of /etc/LCFG-RELEASE.

version componentcomponent!profile resource

This resource specifies the version of the.def file to be used for the specified component. The file is named
component-version.def or component.def (if there is no version specified).

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

(216) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.45. profile

VERSION

2.1.64-1

The Complete Guide to LCFG (217)

The Complete Guide to LCFG Paul Anderson

B.46 ramdisk

LCFG ramdisk component

DESCRIPTION

This object creates and configures one or more ramdisks.

RESOURCES

disks

A list of digits specifying the ramdisks to create. The disks will be mounted on /ramdisk/<N >.

size NN!ramdisk resource

The size (in K) of ramdisk<N >.

users NN!ramdisk resource

A list of users who will have directories created a ramdisk<N >. Each directory will be named after, and
owned by, the corresponding user. Permissions are set to 0700.

PLATFORMS

Redhat7, Redhat9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.3.0-1

(218) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.47. rmirror

B.47 rmirror

An LCFG component for offline disc mirroring.

DESCRIPTION

This object carries out offline mirroring by invoking rsync.

RESOURCES

disklist

A list of disks to be rsynced to the local machine.

srchost tagtag!rmirror resource

The host serving the disktag. The source disk is expected to be accessible to rsync assrchost::tag, so there
should be an rsync server daemon running on the source machine, offering the source disk as rsync moduletag.
This can be set up using thersync LCFG component.

dstdir tagtag!rmirror resource

The local destination directory holding the mirror for disktag.

checksum

When set totrue rmirror tellsrsync to use the–checksumoption. When rsync is deciding which files need to
be transferred to bring the mirror up to date, this makes rsync checksum all files before transfer, and transfer
any files whose checksum and/or size does not match that of the corresponding file already on the rmirror. This
option effectively makes rmirror more meticulous when checking for file corruption.

When set tofalsechecksum-checking will not be used on files whose mirror has the same timestamp and size.

The default value isfalse.

checksum tagtag!rmirror resource

When set totrue this option overrides the current setting of thechecksumresource for disktagonly. Its default
value is the same as that of thechecksumresource.

timestamp

When set totrue, rsync will not copy any files whose existing mirror copies are already the same length and
have the same timestamp.

When set tofalsermirror tells rsync to use the–ignore-timesoption, which makes rsync ignore timestamps
when deciding which files to copy.

The default value istrue.

timestamp tagtag!rmirror resource

When set totrue this option overrides the current setting of thetimestamp resource for disktagonly. Its default
value is the same as that of thetimestamp resource.

wholefiles

When set totrue this option tellsrsync to use its–whole-fileoption. This makesrsync copy across whole files
which have changed, rather than using its incremental algorithm to copy across only the changes.

When set tofalsersync will use its default behaviour, which is to use its incremental algorithm - that is, copying
across only the parts of files which have changed - unless both source and target are on the local machine. This
option will often result in quicker running of rmirror, but may lead to any temporary corruption of a file on the
source machine persisting indefinitely in the target machine’s copy of the file.

The default value isfalse.

The Complete Guide to LCFG (219)

The Complete Guide to LCFG Paul Anderson

wholefiles tagtag!rmirror resource

When set totrue this option overrides the current setting of thewholefilesresource for disktagonly. Its default
value is the same as that of thewholefilesresource.

deleteafter

When set totrue this option makesrmirror tell rsync to use its–delete-afteroption. This makesrsync delete
outdated files on the target system after copying across changes from the source system.

When set tofalse this option makesrmirror tell rsync to use its default file deletion behaviour, which is to
delete outdated files on the target system before copying across changes from the source system.

The default value isfalse.

deleteafter tagtag!rmirror resource

When set totrue this option overrides the current setting of thedeleteafterresource for disktagonly. Its default
value is the same as that of thedeleteafterresource.

timeout

This resource is the time, in seconds, before rmirror gives up on an apparently dormant rsync process on a
remote machine, times it out, and goes on to the next backup to be performed. Thetimeout option sets the
timeout value for all rmirror backups on this machine. The default value is3600, meaning one hour. To disable
timeouts set this option to 0.

timeout tagtag!rmirror resource

This resource overrides the current setting of thetimeout resource for disktag only. It has the same default
value as thetimeout resource.

safetylimit

This resource is the maximum percentage of the files in the existing backup copy that it is permissible for
an rmirror run to delete. Just before rmirror performs a backup, it calculates what percentage of the files in
the existing backup would be deleted by the backup running again; and if this percentage is greater than the
maximum allowable percentage in thesafetylimit resource, the backup is cancelled and a warning is given.
The default value ofsafetylimit is 10, meaning that a backup will not run if it would mean deleting more than
10% of the existing backup files.

safetylimit tagtag!rmirror resource

This resource overrides the current setting of thesafetylimit resource for disktag only. It has the same default
value as thesafetylimit resource.

AUTHORS

Chris Cooke <cc@inf.ed.ac.uk>

VERSION

1.8.9-1

(220) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.48. routing

B.48 routing

The LCFG routing component

DESCRIPTION

This object constructs all the necessary configuration files and starts the appropriate routing daemon.

GENERIC RESOURCES

type

Do we want to runrouted or gated or (eventually)zebra ?

If we run routed then we just have to accept everything that’s thrown at us. If we run gated then we do a bit
more work, but we also get more control over what we accept.

If this is null then the object gets to choose what’s ”best” (but note that it will then force rdisc off).

contextlabel

This resource does not actually affect the operation of the component, but instead is included in some of its
messages. Setting it to some lcfg context-specific value might therefore be useful to the user.

snmp

Do we want the daemon to attempt to speak snmp? (Probably not!) This is in principle a generic resource,
though only gated understands it at the moment.

ROUTED RESOURCES

routed binary

The name of therouted binary.

GATED RESOURCES

static

Specifies hosts and networks for which static routes should be installed.static contains a list of tags. For
eachtag there must be a correspondinggateway tag and optionalhosts tag and/ornetworks tag. The
former is just a list of host IP addresses; the latter is a list of networks, with optional masks separated by ’:’ or
mask lengths separated by ’/’.

rip import

rip import extra

List of networks which should be imported from RIP (with optional masks or lengths separated by ’:’ or ’/’ as
before). If this is blank then we just accept everything we’re given.rip import extra has two functions:
it makes it easy to add things to the default set, and it means these resources can each be short enough to fit
even though the combined length is too much.

rip accept default

Should we accept the default route? Set this to null to ignore it.

rip nobroadcast

Should we send rip packets? If this is set then we don’t.

The Complete Guide to LCFG (221)

The Complete Guide to LCFG Paul Anderson

rip ifs

Since we can only have one ”interface” statement for each interface we bundle the functionality under the
rip ifs resource, which contains a list of interfaces for which metric-tweaking is required. For each there’s
then a correspondingrip metricin if andrip metricout if resource, which control the metric which
should be set on input or added on output, andrip ripin if or rip noripin if, which control whether
RIP is accepted or not and which can’t both be set. Likewiserip ripout if andrip noripout if control
the sending of routing information. At least one of the interface sub-resources has to be set. The usual gated
rules apply here; in particular ”all” is acceptable. The tag-name is assumed to be the interface name by default,
but if this isn’t appropriate then therip ifname if resource can be used to change it. Finally, we may want
to assign a non-default metric usingif metric if when we export it as a direct route.

rip export

rip export extra

rip exportifs

There are two lots of resources involved in RIP exporting:rip export and rip export extra , if set,
define the defaults for all not-otherwise-specified interfaces; andrip exportifs contains a list of interfaces
for specific handling, each of which has a correspondingrip export whateverlist. If it’s required to control
explicitly which directly-connected networks should be exported everywhere, this can be done by setting the
appropriaterip export direct whateverresources.rip descr whateveradds a helpful comment to
the gated configuration file.rip name whateversets the interface name, if it’s different from the tag.

Note that it may be necessary forwhateverto be ”all”.

rdisc server

Should we run rdisc? Note that this’ll be unconditionally forced off unlesstype is explicitly set togated .

gated binary

The name of thegated binary.

gated pid file

Wheregated will write its pid file.

gated config file

Where should the generatedgated.conf file go?

gated syslog level

At what syslog level shouldgated ’s messages be produced?

traceoptions

rip traceoptions

Trace options, ingated -standard form.traceoptions specifies global options, whilerip traceoptions
specifies RIP-specific options.

STATIC RESOURCES

static default

The address of a router which should be set as the static default.

(222) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.48. routing

PRIVATE RESOURCES

The following resources should not normally have their values changed from the installation defaults. They are use
either to communicate state between method invocations, or to define where the component’s various compiled C
helper programs have been installed, or to provide Solaris/Linux compatibility hooks. Setting them incorrectly may
result in the component not functioning correctly. Refer to the component source itself for details as to their various
functions.

checkInList

AUTHORS

George Ross <gdmr@dcs.ed.ac.uk>

VERSION

3.3.40-1

The Complete Guide to LCFG (223)

The Complete Guide to LCFG Paul Anderson

B.49 rpmaccel

LCFG rpmaccel component

DESCRIPTION

This component configures a squid accelerator for fronting an RPM repository.

httpport

The port that the squid accelerator should listen on. Defaults to 80.

cachemem

Specifies a limit on how much additional memory squid uses as a memory cache of objects. Sets the squid
cache memparameter. Defaults to 128 Mb.

maxobjsize

Objects larger than this size will not be cached. Sets the squidmaximum object size parameter. Defaults
to 1024 Mb.

cachedir

The location of the cache directory tree. Used to set the squidcache dir parameter. Defaults to/var/spool/squid .

cachedirsize

Specifies the maximum amount of disk space the cache should occupy in the cache directory tree. Defaults to
10 Gb.

accelhost

Specifies the hostname of the HTTP server that is to beaccelerated. Sets the squidhttpd accel host
parameter. No default value.

accelport

Specifies the port number of the HTTP server that is to beaccelerated. Sets the squidhttpd accel port
parameter. Defaults to 80.

acltags

A list of squid ACLs.

acltag aclname

The ACL value for the ACL with nameaclname.

accesstags

A list of squid httpaccess rules.

accesstag tag

The value of the squid httpaccess rule with tagtag.

AUTHORS

Alastair Scobie <ascobie@inf.ed.ac.uk>

VERSION

0.99.3-1

(224) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.50. rpmcache

B.50 rpmcache

LCFG component to maintain a local RPM cache

DESCRIPTION

This component maintains a cache directory on the local machine containing a copy of every RPM specified in an
rpmcfg file. The list of available RPMs is obtained by reading a file calledrpmlist from the server in exactly the same
way asupdaterpms. Wildcards in the rpmcfg file are evaluated, and the cache is updated by fetching RPMs from the
repository over HTTP. Normally, the rpmcfg file will be the client’s own rpmcfg file so that the cache contains a copy of
every RPM that should be installed on the system. Theupdaterpms component may then use the cache as the source
directory, allowing the system to be updated without direct access to a remote repository.

Therun method is used to initiate a cache update and supports the following options:

-c

Force old entries to be removed (cleaned) from the cache, even if thepreserveresource is set.

-p

Do not delete (preserve) old entries in the cache, even if thepreserveresource is not set.

-r root

root is prefixed to thecachedir resource to form the name of the cache directory. This is useful at install time.

-t

Test only. Display cache operations that would be performed without performing them.

The install method is identical to therun method, except that the resources are loaded directly from the profile (rather
than the status file), and no locking or status saving takes place. This is intended for use at install time (only).

RESOURCES

cachedir

The pathname of the cache directory on the client.

cppopts

Additional options to be passed to cpp when reading rpmcfg files.

genhdfile

If this resource is set, then thegenhdfileprogram is run on rpms after downloading them, to create the header
info file.

localpath

A (space-separated) list of directories on the client machine to be treated as local master repositories. Any
RPMs present in these directories will not be searched for on the server, and will not be copied into the cache.

preserve

Do not delete old entries from the cache.

rpmlist

The name of a file to be created in the cache directory, containing a list of the RPMs in the cache. By default,
this is null and no file is created.

The Complete Guide to LCFG (225)

The Complete Guide to LCFG Paul Anderson

rpmpath

A comma separated list of URLs for directories containing RPMs. Each directory should contain a set of RPMs,
and a file namedrpmlist , listing the available RPMs. Local directory names may also be specified instead of
URLs.

rpmcfg

The full pathname of the rmcfg file on the client machine containing the list of RPMs to maintain in the cache.
Multiple (comma-separated) rpmcfg files may be specified, in which case they are effectively concatenated.
rpmcfg files may also be specified as remote URLs which are automatically downloaded - however, note that
any files included with#includewill not be automatically downloaded.

rpmlock

The name of a lock file in the cache. This file will be removed before a cache update, and created after the
update. This preventsupdaterpms from atempting to run during a cache update.

trigger

A command run run after a sucessful update of the cache. For example (and by default)om updaterpms run.

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.17-1

(226) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.51. rsync

B.51 rsync

LCFG rsync server daemon component

DESCRIPTION

This component configures and starts the rsync server daemon. Changes to LCFG resources will automatically result
in changes to the rsync server’s configuration.

RESOURCES

globals

A list of tags, one for eachgentryresource.

gentry tag

An rsync global configuration option. For more details of rsync’s possible global configuration options see the
man page forrsyncd.conf. tagshould be listed in theglobalsresource.

modules

A tag list of the rsync modules to be set up; one tag for each rsync module.

mentries module

For rsync modulemodule, a tag list of the configuration options for that module.moduleshould be listed in the
modulesresource.

mentry module tag

A configuration option for rsync modulemodule. tag should be listed in resource mentriesmodule. For details
of rsync’s possible global configuration options see the man page forrsyncd.conf.

EXAMPLE

rsync.globals log rsync.gentrylog log file = /var/obj/log/rsync

rsync.modules glasgow rsync.mentriesglasgow 1 2 3 4 5 rsync.mentryglasgow1 path=/disk/home/glasgow rsync.mentryglasgow2
hosts allow=foo.inf.ed.ac.uk bar.inf.ed.ac.uk rsync.mentryglasgow3 hosts deny=* rsync.mentryglasgow4 uid=0 rsync.mentryglasgow5
read only=yes

AUTHORS

Chris Cooke <cc@inf.ed.ac.uk>

VERSION

2.1.0-1

The Complete Guide to LCFG (227)

The Complete Guide to LCFG Paul Anderson

B.52 server

LCFG server component

DESCRIPTION

The profile server component for LCFG. This component manages the mxkprof daemon which compiles configuration
protocols. Note that theserver resources control the actions of the server and are only required on hosts running a
server component. However, the server does require some resources for each client that it compiles; these resources
are theprofile resources.

ADDITIONAL METHODS

Therun method sends a HUP to the mkxprof daemon to initiate a recompilation. Option-r sends a HUP to the daemon
after creating a flag file which causes it to completely rebuild all dependencies and profiles.

RESOURCES

acl access fileaccess file!server resource

An Apache ”allow from ” specification for the access file corresponding toaccessfile, specifying hosts which
should be permitted to access this directory without authentication.

auth dirdir!server resource

A list of tags representing Apache web access files to be created in the directory corresponding totag (see
linkdirs).

debug

A set ofmkxprof debug flags.

defpath

A space separated list of directory pathnames in which to search for component default files. The directories
are searched in the given order. The default is /usr/lib/lcfg/defaults/server. Default files must have the extension
.def.

derive

If this resource is non-null, mkxprof will generate derivation attributes in the profile (-r option).

dst tagtag!server resource

The destination directory to be created for the giventag (seelinkdirs).

fetch

A space separated list of specifications of the formdst=src, wheresrc anddst are rsync specifications. Rsync
will be called for each item in this list before starting a compilation cycle. This allows source directories to be
collated from multiple remote servers.

file access fileaccess file!server resource

The name of the Apache access file for the givenaccessfile. Normally, this will be.htaccess, but Apache may
be configured to use multiple different access files in different circumstances: for example, a different access
file may be used for SSL and plain HTTP.

hdrpath

A space separated list of directory pathnames in which to search for header files. The directories are searched in
the given order. The default is /var/lcfg/conf/server/include,/usr/lib/lcfg/server/include. Header files must have
the extension.h.

(228) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.52. server

linkdirs

A (space-separated) list of tags representing directories to be created in the root web directory. Each directory
is automatically populated with links to the contents of some other directory, and one or more Apache access
control files may be automatically created. By default, this is used to export the icons used by the status pages,
and the CGI scripts. Other tags can be added to export, for example, an RPM repository, or some other static
pages.

lockfiles

The lockfiles resource is comma-separated list of full pathnames for lock files. In daemon mode,mkxprof will
not compile source files while any of these lockfiles exist; the compilation will be deferred until the next poll,
or notification. This provides a mechanism to allow several synchronized changes to be made to related files,
in an atomic way.

poll

The poll (-p) argument for mkxprof.

pkgpath

A space separated list of directory pathnames in which to search for package lists. The directories are searched
in the given order. The default is /var/lcfg/conf/server/packages. Package lists must have the extension.pkgs
or .rpms.

pwf access fileaccess file!server resource

The name of an Apache DB password file which will be used to to authenticate requests for files in this directory
when the access control conditions are not satisified (seeacl accessfile), or not present. Any valid user in the
password file will be permitted to connect. The special valueauto can be supplied in which case the server will
use the password file created automatically from theprofile.passwdresources.

ropts

Additional rsync options for mkxprof (-o option).

servername

The FQDN of the server to be used in status messages and profiles. The default is obtained from thehostname
command.

src tagtag!server resource

The source directory to be created for the giventag (seelinksdirs). All items in this directory will be symboli-
cally linked to corresponding items in the destination directory.

srcpath

A space separated list of directory pathnames in which to search for source files. The directories are searched
in the given order. The default is /var/lcfg/conf/server/source. Source files must have no extension.

statichtml

This option generates static HTML pages containing status information (-s option). Normally, thestatus re-
source should be used instead .

status

If this option is present, status information, including all errors and warnings are stored for display on an HTML
status page. Normally, the CGI scriptsstatus and index will be used to display this status information. The
statichtml resource can be used to automatically generate static HTML pages which do not require the CGI
sripts, however this is less flexible and results in slower compilations (-h option).

stats

If this resource is non-null, mkxprof will write statistics to the logfile /var/lcfg/log/server.stats (-x option).

The Complete Guide to LCFG (229)

The Complete Guide to LCFG Paul Anderson

valpath

A space separated list of directory pathnames in which to search for validation files. The directories are searched
in the given order. The default is /var/lcfg/conf/server/validation. These files are used by thevINFILE macro
for validating strings.

verbose

Non-null for mkxprof verbose logging.

warn

mkxprof warning flags.

webdir

The web directory for the-w option of mkxprof. The default is /var/lcfg/conf/server/web.

SEE ALSO

lcfg-profile

The definition of client resources used by the server.

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

2.1.64-1

(230) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.53. snmp

B.53 snmp

The LCFG SNMP component

DESCRIPTION

This object constructs all the necessary configuration files and starts thesnmp local agent and optionally the trap
daemon.

RESOURCES

daemon

ucdv4snmpd

Which type of daemon should we run? The component itself may support more than one, depending on the
platform. And where do we find it?

killsig

When stopping, what signal would the daemon like?

read community

trap community

Read and trap communities. We don’t enable write!

send traps

trapHosts

Should we send traps? If so, where to? (This is a good candidate for being context-sensitive.)

local net

For access control, a list of local networks.

sysDesc

sysLocation

make

model

sno

hostid

sysContact

Various useful things to put in the MIB variables.

AUTHORS

George Ross <gdmr@dcs.ed.ac.uk>

VERSION

3.1.4-1

The Complete Guide to LCFG (231)

The Complete Guide to LCFG Paul Anderson

B.54 sshd

LCFG SSHD Component

SYNOPSIS

sshdMETHOD[ARGS]

DESCRIPTION

An LCFG component that is used to configure and manage the SSH daemon and the generation/publication of keys.

METHODS

The non-standard component methods are described below.

GenerateKeys

Generates an RSA key and a DSA key and publishes the keys into a central register using the program defined
in thekeydisthelperresource.

RemoveKeys

Removes any existing RSA key and DSA key and deletes the keys from a central register using the program
defined in thekeydisthelperresource.

RESOURCES

The non-standard component resources are described below.

keydisthelper

The full path to a script which manages the distribution of SSH keys. If empty (the default), no distribution is
performed.

The script must take a number of command line options:

–add1 file

Add the version 1 key contained infile to the distribution for this machine.

–add2 file

Add the version 2 key contained infile to the distribution for this machine. Note that –add2 may be
specified multiple times on machines which have multiple keys.

–extract1 file

Create a version 1 knownhosts file infile.

–extract2 file

Create a version 2 knownhosts file infile.

–delete

Delete all SSH keys for this machine.

krb5auth

This sets the sshdconfigKrb5Authentication variable. Setting this toyes will allow kerberos authenti-
cation.

(232) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.54. sshd

krb5tgtpass

This sets the sshdconfigKrb5TgtPassing variable. Setting this toyes will allow KerberosTGT forwarding
to the server.

rhostsrsa

This sets the sshdconfig RhostsRSAAuthentication variable. Leaving this empty or set toyes will
allow rhosts or /etc/hosts.equiv authentication together with successful RSA host authentication. Setting this to
no will disallow this.

FILES

/etc/ssh/ssh host key

/etc/ssh/ssh host dsa key

/etc/ssh/ssh known hosts

/etc/ssh/ssh known hosts2

/etc/ssh/ssh config

/etc/ssh/sshd config

/usr/lib/lcfg/conf/sshd/ssh keys published

PLATFORMS

Redhat9

SEE ALSO

sshd, ssh-keygen, kinit, ldapsshkeys

AUTHOR

DICE Authentication and Authorization Team<auth-team@inf.ed.ac.uk>

VERSION

1.20.4-1

The Complete Guide to LCFG (233)

The Complete Guide to LCFG Paul Anderson

B.55 symlink

LCFG symlink component

DESCRIPTION

This component builds and removes symbol links.

links

A list of symbol links to make. Each link has a linknamelink tag and a targetlink tag.

linkname link

The linkname of the link specified by taglink.

target link

The target of the link specified by taglink.

zap link

Normally the symlink component will fail if there is already a real file or directory with the same name as the
linkname . Setting this resource toyes , overrides this behaviour and instructs the component to zap any
preexisting file or directory. Dangerous !

AUTHORS

Alastair Scobie <ascobie@inf.ed.ac.uk>

VERSION

0.100.6-1

(234) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.56. syslog

B.56 syslog

LCFG syslog component

DESCRIPTION

This component configures and starts thesyslogd daemon and starts theklogd daemon. It is normally the first
component to be run (as specified in the resourceboot.services).

The basesyslog.conf configuration file is created from a template that allows for almost complete control of the
contents of the configuration file. The contents are controlled via resources described below. The base file generated
from the template is passed throughm4whensyslog is configured or started. A number of symbols are predefined,
but these do not include theLOGHOSTvariable which is conventionally available.

New rules are added to the syslog.conf file by defining the selector and action fields for the rule (see syslog.conf(5)) and
usually also the text of a preceding comment line. The rules are grouped in four sections corresponding to the resources
priorities , applications , otherlines andadditions .

RESOURCES

Syslogd Configuration File Resources

priorities

A list of tags for rules concerning messages of different priority levels to be included insyslog.conf .
Default value is the listemerg alert err .

pricomment tag

The text for a comment line that precedes the rule for prioritytag.

pricommentemerg defaults toEmergency messages will be displayed using wall .

pricommentalert defaults to<Alert messages will be directed to the operator>.

pricommenterr defaults toErrors go to the console .

priselector tag

Theselectorfield of the rule for prioritytag.

priselectoremerg defaults to*.emerg .

priselectoralert defaults to*.alert .

priselectorerr defaults to*.err .

priaction tag

Theactionfield of the rule for prioritytag.

priactionemerg defaults to* .

priactionalert defaults toroot .

priactionerr defaults to/dev/console .

applications

A list of tagsfor rules concerning messages from differentfacilities to be included insyslog.conf . Default
value is the listauth authpriv mail local1 local2 local6 .

appselector tag

Theselectorfield of the rule for facilitytag.

appselectorauth defaults toifdef(‘AUTHDEBUG’,auth.debug,auth.info) .

appselectorauthpriv defaults toifdef(‘AUTHDEBUG’,authpriv.debug,authpriv.info) .

The Complete Guide to LCFG (235)

The Complete Guide to LCFG Paul Anderson

appselectormail defaults toifdef(‘MAILDEBUG’,mail.debug,mail.info) .

appselectorlocal1 defaults toifdef(‘INETDEBUG’,local1.debug,local1.info) .

appselectorlocal2 defaults toifdef(‘XNTPDDEBUG’,local2.debug,local2.notice) .

appselectorlocal6 defaults toifdef(‘DNSDEBUG’,local6.debug,local6.info) .

appaction tag

Theactionfield of the rule for facilitytag.

appactionauth defaults toAUTHLOG().

appactionauthpriv defaults toAUTHLOG().

appactionmail defaults toMAILLOG() .

appactionlocal1 defaults toINETLOG() .

appactionlocal2 defaults toXNTPDLOG().

appactionlocal6 defaults toDNSLOG().

otherlines

A list of tagsfor miscellaneous other rules. Defaults tolocal7 general .

othcomment tag

The text for a comment line that precedes the rule corresponding totag.

othcommentlocal7 defaults toMessages from init are reported on local7 (as defined
by /etc/initlog.conf) .

othcommentgeneral defaults toOther general messages go to the syslog log file .

othselector tag

Theselectorfield of the rule corresponding totag.

othselectorlocal7 defaults tolocal7.info .

othselectorgeneral defaults to*.info;kern.info;auth.none;mail.none;local1.none;local5.none;local6.none;local7.none .

othaction tag

Theactionfield of the rule corresponding totag.

othactionlocal7 defaults toBOOTLOG().

othactiongeneral defaults toLOGFILE() .

additions

A list of tagsfor additional rules to be added tosyslog.conf .

addcomment tag

The text for a comment line that precedes the additional rule corresponding totagto be added to thesyslog.conf
file.

addselector tag

Theselectorfield of the additional rule corresponding totag to be added to thesyslog.conf file.

addaction tag

Theactionfield of the additional rule corresponding totag to be added to thesyslog.conf file.

add tag

The complete additional rule corresponding totag to be added to thesyslog.conf file. This is for backwards
compatability with earlier versions of the syslog component.

(236) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.56. syslog

Other Resources

sopts

Options for thesyslogd daemon.

kopts

Options for theklogd daemon.

m4 defines

Additional definition macros for m4 when generating thesyslog.conf file from the base configuration file
derived from the template.

This can be used to change the priority level of messages logged for the facilities controlled via theapplication
resource. For example using the default value for appselectormail one could change the priority level of mes-
sages being logged by setting this resource to-DMAILDEBUG.

PLATFORMS

Redhat7, Redhat9

AUTHOR

Alastair Scobie<ascobie@inf.ed.ac.uk>, Ken Dawson<ktd@inf.ed.ac.uk>

VERSION

1.1.0-1

The Complete Guide to LCFG (237)

The Complete Guide to LCFG Paul Anderson

B.57 tcpwrappers

LCFG tcpwrappers component

DESCRIPTION

This component configures the machine’s tcpwrappers.

allow

A list of services that are to be included in the/etc/hosts.allow file for access control bytcpd .

allow service

The access control list for the specified service. This is a list of patterns as specified in the man page for
hosts access .

deny

A list of services that are to be included in the/etc/hosts.deny file for access control bytcpd .

deny service

The access control list for the specified service. This is a list of patterns as specified in the man page for
hosts access .

banners

A list of services that will have/etc/tcp.banners/ entries created.

banlines service

A list of banner lines tags for serviceservice

banline service tag

The banner line associated with tagtag.

AUTHORS

Alastair Scobie <ascobie@inf.ed.ac.uk>

VERSION

0.99.5-1

(238) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.58. toshset

B.58 toshset

The LCFG toshset component

DESCRIPTION

This component controls thetoshsetutility to change the parameters of a toshiba laptop depending on the power state.
Theconfiguremethod should be caled from the apm component when the power state changes.

RESOURCES

battery

A list of tags for parameters to be passed to toshset when running on battery.

battery tagtag!toshset resource

The arguments to be passed to toshset for the specified tag.

context battery

An LCFG context to be enabled when running on battery.

context line

An LCFG context to be enabled when running on mains power.

line

A list of tags for parameters to be passed to toshset when running on mains power.

line tagtag!toshset resource

The arguments to be passed to toshset for the specified tag.

PLATFORMS

Redhat9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

0.99.3-1

The Complete Guide to LCFG (239)

The Complete Guide to LCFG Paul Anderson

B.59 updaterpms

LCFG updaterpms component

DESCRIPTION

This object is used to manage the installed RPMs.

Thestart andrun methods attempt to match the installed RPMs with those listed in the machine’s RPM spec file.

Theinstall method is used to install a Linux box. It only works if the running system filesystems are not the same as
the destination system filesystems. It is usually run only from the install subsystem, with network system filesystems.

The testrpm method can be used to check which RPMs will be installed, upgraded or removed when thestart or
run methods are invoked.

Thedeleterpm method can be used to delete a specified RPM manually. This is useful when the updaterpms process
has gone AWOL for some reason and one needs to fix up a lot of machines (viaom). Very rarely used.

The installrpm method can be used to install a specified RPM manually. This is useful when the update process
has gone AWOL for some reason and one needs to fix up a lot of machines (viaom).

offline

This resource, if set toyes , stops the object from making any configuration changes when thestart method
is invoked. This is handy for portables where therun method is user invoked to make configuration changes.

cppbin

The pathname of the preprocessor used to preprocess the RPM spec file.

flags

Extra flags to be used forupdaterpms .

rpmdir

The directory containing the RPMs.

rpmcfgdir

The directory containing the RPM spec files.

rpmcfg

The RPM spec file for this machine.

xferdir

Temporary directory for downloading RPMs fetched over HTTP Defaults to/var/tmp

rpmlock

This resource, if defined, specifies a lock file to look for on the RPM repository before running updaterpms. If
the file is missing, it is assumed that an RPM repository update is in progress and updaterpms won’t be run.

mail

Specifies who should be mailed if the software update process fails.

AUTHORS

Alastair Scobie <ajs@dcs.ed.ac.uk>

VERSION

0.100.29-1

(240) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.60. vigor

B.60 vigor

Configure Vigor 2600 router

DESCRIPTION

This component is intended to monitor and configures a Vigor 2600 DSL router. Router configuration is not yet imple-
mented and the component currently only processes syslog messages from the router.

The 2600 router sends a large number of syslog messages to various hardwired facilities and priority levels. If these
are processed by the normal syslog daemon, they tend to swamp important messages generated by other services, and
they are difficult to filter. Thelcfg-vigor component acts as a syslog daemon on an alternative port which can be used
to process just vigor messages. Error and Warning messages generate LCFG errors and warnings which appear in the
status display. The WAN pings are also monitored to flag the router or link as down.

RESOURCES

ackinterval

The maximum delay between WAN pings and corresponding ACKs before flagging the link as down.

inbound

True to log inbound conections.

ip

The IP address of the router.

outbound

True to log outbound conections.

pinginterval

How long (in seconds) between WAN pings should be allowed before flagging the router as down.

pollinterval

How often (in seconds) to check the WAN ping responses.

port

The port for the syslog daemon. This should match the value configured into the router. The default is 735.

waninfo

True to log chatty info messages about the WAN (very frequent pings!).

PLATFORMS

Redhat7, Redhat9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

0.99.12-1

The Complete Guide to LCFG (241)

The Complete Guide to LCFG Paul Anderson

B.61 vlan

LCFG vlan component

DESCRIPTION

This component configures VLAN interfaces.

The current version is intended to be used at system boot only.

vlans

A list of VLANs to be configured. Each VLAN must have the following resources.

interface vlan

The physical interface to be configured with this VLAN.

tag vlan

The VLAN numerical tag for this VLAN.

nametype

Sets the way vlan-device names are created. See the man page forvconfig .

AUTHORS

Alastair Scobie <ascobie@inf.ed.ac.uk>

VERSION

0.100.0-1

(242) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.62. vmidi

B.62 vmidi

Configure external MIDI device

DESCRIPTION

This component uses the vmidi kernel module to drive an external (serial or parallel) MIDI controller. The kernel
module is loaded and a daemon copies data from the vmidi output to the specified port.

RESOURCES

dev

The device to which the MIDI controller is attached (eg. ttyS0).

rate

The baud rate for the device (eg. 38400). This must be null for non-serial devices.

PLATFORMS

Redhat7, Redhat9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

0.99.6-1

The Complete Guide to LCFG (243)

The Complete Guide to LCFG Paul Anderson

B.63 xfree

LCFG xfree component

DESCRIPTION

This component builds the XFree86/etc/X11/XF86Config file. It does not start the X server.

This text documents the resources used to construct the/etc/X11/XF86Config file. It does not explain the seman-
tics of the/etc/X11/XF86Config ; for this you should read theXF86Configman page.

RESOURCES

Resources are grouped by theXF86Configsection they construct.

Section ”Files”

fontpaths

A list of fontpaths.

fontpath fp

TheFontPath entry for fontpathfp.

modulepaths

A list of modulepaths.

modulepath mp

TheModulePath entry for modulepathmp.

rgbpath

TheRGBPath entry.

Section ”ServerFlags”

flags

A list of server flags.

flag f

TheOption flag name for flagf.

flagvalue f

TheOption flag value for flagf.

Section ”Module”

modules

A list of module. Used to generateLoad andSubSection ”module”entries.

modopts m

A list of module option tags for modulem. Used to generate theOption entries within a module’sSubSection
entry.

modopt m mo

TheOption entry associated with the modulem and tagmo.

(244) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.63. xfree

Section ”InputDevice”

inputdevices

A list of inputdevice tags. Used to generate one or moreSection ”InputDevice” blocks.

Each tagid is used to generate theIdentifier entry in the relevant block, generating the nameinput id.

inputdriver id

TheDriver entry for the input deviceid.

inputopts id

A list of inputdevice options for the input deviceid.

inputopt id io

The options entry associated with the input deviceid and tagio. Note that the resource value is inserted
verbatim.

Section ”Device”

devices

A list of video device tags. Used to generate one or moreSection ”Device”blocks.

Each tagvd is used to generate theIdentifier entry in the relevant block, generating the namevideo vd.

videodriver vd

TheDriver entry for video devicevd.

videoscreen vd

TheScreenentry for video devicevd.

vidopts vd

A list of video options for video devicevd.

vidopt vd do

The options entry associated with video devicevd and tagdo. Note that the resource value is inserted verbatim.

Section ”Monitor”

monitors

A list of monitor tags. Used to generate one or moreSection ”Monitor” blocks.

Each tagmid is used to generate theIdentifier entry in the relevant block, generating the namemonitor mid.

hsync mid

TheHorizsync entry for monitormid.

vrefresh mid

TheVertrefresh entry for monitormid.

monopts mid

A list of options for monitormid.

monopt mid mo

The options entry associated with monitormid and tagmo. Note that the resource value is inserted verbatim.

The Complete Guide to LCFG (245)

The Complete Guide to LCFG Paul Anderson

Section ”Modes”

modegrps

A list of mode groups. Used to generate one or moreSection ”Modes” blocks.

Each tagmg is used to generate theIdentifier entry in the relevant block, generating the namemodegrp mg.

modes mg

A list of modelines for the mode groupmg.

mode mg mm

TheModeline entry associated with mode groupmgand tagmm.

Section ”Screen”

screens

A list of screens. Used to generate one or moreSection ”Screen”blocks.

Each tagsid is used to generate theIdentifier entry in the relevant block, generating the namescreensid.

device sid

The video device to use for screensid. This must refer to an entry from the resourcexfree.devices.

monitor sid

The monitor to use for screensid. This must refer to an entry from the resourcexfree.monitors.

displaydepth sid

TheDefaultDepth resource for screensid.

screenopts sid

A list of screen options for screensid.

screenopt sid so

The options entry associated with screensid and tagso. Note that resource value is inserted verbatim.

displaydepth sid

TheDepth value for theSubSection ”Display” block for screensid.

displaymodes sid

TheModesvalue for theSubSection ”Display” block for screensid.

displayopts sid

A list of display options for theSubSection ”Display” block for screensid.

displayopts sid do

The display options entry associated with screensid and tagdo. Note that resource value is inserted verbatim.

(246) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.63. xfree

Section ”ServerLayout”

layouts

A list of layouts. Used to generate one or moreSection ”ServerLayout” blocks.

Each taglid is used to generate theIdentifier entry in the relevant block, generating the namelayout lid.

layoutscreens lid

A list of Screenentries for layoutlid. Each entry must refer to a screen defined in the resourcexfree.screens.
The entry name is used to generate thescreen-idfield of theScreenentry.

layoutscreenid lid sid

Thescreen-numfor theScreenentry associated with layoutlid and entrysid.

layoutscreenpos lid sid

The position information for theScreenentry associated with layoutlid and entrysid.

layoutinputs lid

A list of InputDevice entries for layoutlid. Each entry must refer to an inputdevice defined in the resource
xfree.inputdevices. The entry name is used to generate theidev-idfield of theInputDevice entry.

layoutinputopts lid iid

Additional option fields for theInputDevice entry associated with layoutlid and tagiid.

layoutopts lid

A list of layout options for layoutlid.

layoutopt lid lo

The options entry associated with layoutlid and taglo. Note that resource value is inserted verbatim.

Section ”DRI”

drimode

TheDRIMode entry ofSection ”DRI” .

drigroup

TheDRIgroup entry ofSection ”DRI” .

AUTODETECTION

If the resourcexfree.devicemain has the valueauto, the component will attempt to identify the driver for the system’s
video card and set the resourcexfree.videodriver auto appropriately. This assumes that there is a screen calledmain
and a video device calledauto.

If the resourcexfree.monitor main has the valueauto, the component will attempt to identify the system’s monitor will
set the resourcesxfree.hsyncauto andxfree.vrefresh auto appropriately. This assumes that there is a screen called
mainand a monitor calledauto.

FILES

/etc/X11/XF86Config

The XF86Config file generated by this component.

/usr/lib/lcfg/conf/xfree/templates/xfree.conf.tmpl

The LCFG sxprof template which processes the above resources.

The Complete Guide to LCFG (247)

The Complete Guide to LCFG Paul Anderson

PLATFORMS

Redhat9

AUTHOR

Alastair Scobie<ascobie@inf.ed.ac.uk>

VERSION

1.0.0-1

(248) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.64. xinetd

B.64 xinetd

The lcfg xinetd component. xinetd is the extended Internet services daemon.

DESCRIPTION

This component starts, stops and configures the xinetd daemon. The configuration file used by xinetd is specified by the
conffileresource (default is/etc/xinetd.conf). Services generally provide their own configuration file, located
in the directory specified by thebasedirresource (default is/etc/xinetd.d/). These values can be overridden or
specified in their entirety by resources, to produce a final configuration file located in the directory specified by the
confdir resource (default is/etc/xinetd.lcfg/).

RESOURCES

conffile

The configuration file used by the xinetd daemon. Typically this file contains some default values and then
specifically includes the directory containing individual service definitions. Default is/etc/xinetd.conf .

basedir

The base directory where vendor-provided service definition files can be found. The default is/etc/xinetd.d/ .
It is very unlikely that you will want to change this value.

confdir

The configuration directory that will be used by the xinetd daemon for service definition files - it will be
included at the end of the main configuration file (seeconffileabove). The definitions in this directory can be
a combination of files sourced from the directory specified bybasedir, those specified entirely by resources
(see below), or a combination of the two. Resources defined for a particular service will override the default
configuration for that service at the attribute level. The component is responsible for producing the files in this
directory.

enableservices

A list of services to be enabled. Only items in this list will be enabled, regardless of any other factors.Impor-
tant note: For services that provide their own definition file (in the directory specified bybasedir, typically
/etc/xinetd.d/), thename of the fileshould be used inenableservicesand also inservices(should any
of its attributes require to be overridden). This is generally the same as the name of the actual service, but not
always. The filename will always be unique, which is why it should be used.

defaults

A list of default attributes to be set in the main configuration file (seeconffileabove).

defassignop attributeattribute!xinetd resource

The assignment operator to be used in the configuration line for this default attribute. Default is=, but -= and
+= can also be used.

defvalue attributeattribute!xinetd resource

The value for the default attribute.

services

A list of services for which attributes and values will be defined through resources. Note that these services
can be already defined (i.e. already have a configuration file in the directory specified bybasedir) - in this case,
attributes defined through resources will be added to the service definition and, in the event of conflicts, will
override previously set values.

attributes serviceservice!xinetd resource

A list of attributes that will be defined for each service listed inservicesabove.

The Complete Guide to LCFG (249)

The Complete Guide to LCFG Paul Anderson

assignop service attributeservice attribute!xinetd resource

The assignment operator to be used in the configuration line for this attribute. Default is=, but -= and+= can
also be used.

value service attributeservice attribute!xinetd resource

The value for the attribute.

EXAMPLES

Here are some examples of how to use resources to control xinetd.

To set the default values in the main configuration file (seeconffile), use resources in this way:

xinetd.defaults instances log_type log_on_success \
log_on_failure cps

xinetd.defvalue_instances 60
xinetd.defvalue_log_type SYSLOG authpriv
xinetd.defvalue_log_on_success HOST PID
xinetd.defvalue_log_on_failure HOST
xinetd.defvalue_cps 25 30

This would result in the following defaults section being written to the xinetd.conf file:

defaults
{

instances = 60
log_type = SYSLOG authpriv
log_on_success = HOST PID
log_on_failure = HOST
cps = 25 30

}

To specify a service entirely using LCFG resources, you would need something like the following:

xinetd.services myservice
xinetd.attributes_myservice flags socket_type wait user \

server log_on_failure
xinetd.value_myservice_flags REUSE
xinetd.value_myservice_socket_type stream
xinetd.value_myservice_wait no
xinetd.value_myservice_user root
xinetd.value_myservice_server /usr/sbin/myserviced
xinetd.assignop_myservice_log_on_failure +=
xinetd.value_myservice_log_on_failure USERID

This would result in a service definition file being created in the directory specified by theconfdir resource. The file for
the resources above would contain the following definition:

service myservice
{

flags = REUSE
socket_type = stream
wait = no
user = root
server = /usr/sbin/myserviced
log_on_failure += USERID

}

(250) Revision 0.99.63: 06/01/05 14:10

Appendix B. List of Components B.64. xinetd

In addition to specifying a service in its entirety, it is possible to add new attributes to an existing service, or override
values which have already been set, replacing the defaults in the service’s configuration file. For example:

xinetd.services telnet
xinetd.attributes_telnet log_on_failure only_from
xinetd.assignop_telnet_log_on_success +=
xinetd.value_telnet_log_on_success USERID DURATION
xinetd.value_telnet_only_from .localdomain.com

Thse resources would result in a new attributeonly from being defined for the telnet service and the new value for
log on success would override the value in /etc/xinetd.d/telnet (pathname here is dependent onbasedir).

SEE ALSO

xinetd(8), xinetd.conf(5), xinetd.log(5)

AUTHOR

Toby Blake <toby@inf.ed.ac.uk>

VERSION

0.99.7-1

The Complete Guide to LCFG (251)

The Complete Guide to LCFG Paul Anderson

(252) Revision 0.99.63: 06/01/05 14:10

Appendix C

Utilities

The Complete Guide to LCFG (253)

The Complete Guide to LCFG Paul Anderson

C.1 lcfglock

Lock/unlock component semaphore

SYNOPSIS

/usr/sbin/lcfglock [options] component

DESCRIPTION

This command is used by LCFG components to prevent multiple simultaneous executions of component methods.

OPTIONS

-b

When used in conjunction with-u this option forces the lock on the named component to be broken, even if it
was owned by some other process.

-d dir

Use directorydir for lock files.

-D

Print debugging messages to stderr.

-n

Lock operations return immediately with exit status 2 if the semaphore is busy rather than waiting.

-p pid

Usepid as the process owning the semaphore. The default is is the process callinglcfglock .

-q

Quiet mode. exit silently when attempting to release non-existent locks, or to take already existing locks.

-t secs

Lock operations return immediately with exit status 2 if the semaphore is busy after waitingsecsseconds.

-u

Unlock (rather than lock) the semaphore.

-v

Print messages when waiting for lock.

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.23-1

(254) Revision 0.99.63: 06/01/05 14:10

Appendix C. Utilities C.2. lcfgmsg

C.2 lcfgmsg

Send messages to LCFG error/logging system

SYNOPSIS

/usr/sbin/lcfgmsg [options] component message

DESCRIPTION

This command is used by LCFG components and daemons to report error and log messages.

OPTIONS

-a

Send a SIGUSR2 to the client component requesting an acknowledgement be sent to the server.

-C event

Clear the named event log (delete the file).

-d

Send a Debug message.

-e

Send an Error message (non-fatal error).

-E event

Send an event message to the named event log.

-f

Send a Fail message (fatal error).

-i

Send an Info message. This message appears in the logfile and on the terminal.

-l

Send a message to the log file.

-n tag

Send a notification message to the monitoring system using ther given tag.

-o

Send an OK message. This message is reported to the terminal only.

-p

Advance progress bar.

-s

Start a progress bar.

-w

Send a warning message.

-x

End progress bar.

The Complete Guide to LCFG (255)

The Complete Guide to LCFG Paul Anderson

ENVIRONMENT VARIABLES

LCFG MONITOR

If this is set to the name of a pipe, erorrs, warnings and monitoring information will be written to the named
pipe.

LCFG SYSLOG

If this is set to the name of a syslog facility, errors and warnings will be copied to syslog.

SEE ALSO

LCFG::Utils, lcfgutils, lcfg-ngeneric, LCFG::Component

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.23-1

(256) Revision 0.99.63: 06/01/05 14:10

Appendix C. Utilities C.3. mkxprof

C.3 mkxprof

Make XML LCFG profile

DESCRIPTION

This command creates XML profiles from LCFG sources files. If source filenames are given on the command line,
profiles will be generated for any host files listed explicitly, and for any which change because they depend on changes
in one of the listed files.

If no files are specified, all source files (including headers, defaults and package lists) in the corresponding paths are
examined, and any which have changed since the last run are recompiled.

mkxprof is normally run from the LCFG profile component.

SYNOPSIS

/usr/sbin/mkxprof [options] [filename..]

OPTIONS

-c dir

This directory is used to maintain caches of persistent state between invocations of mkxprof. It includes span-
ning map data, dependency information and status recrods. When running as root, the default is /var/lcfg/conf/server/cache.
When running as any other user, no persistent state information is maintained unless this option is specified.

-C component

Error messages are passed to the log system for the named component.

-d

If this option is present, mkxprof runs as a daemon, polling or waiting for notifications of changed source files.

-D flags

This option enables debugging for the categories listed by the comma-separated list offlags. Flags may be
prefixed with+ or - to enable/disable specific categories. Possible flags are:

ack - Acknowledgements

assign - Resource assignments

changes - Profile changes

context - Contexts

cpp - CPP output

cppcmd - CPP commands

daemon - Daemon polling

defaults - Adding defaults

depend - Dependency generation

lock - Status DBM locking

mapchange - Changes in exported resources

maps - Spanning maps

meta - Meta-resource processing

mutate - Mutations

notify - Client notification

The Complete Guide to LCFG (257)

The Complete Guide to LCFG Paul Anderson

order - List sorting

packages - Packages

publish - Profile publication

ref - References

rsync - Rsync fetches

sources - Source files

validate - Validations

-E path

Search the (comma-separated) path for default files. The files must have an extension of.def. The string%r
will be substituted with the value of theprofile.releaseresource. The default is /usr/lib/lcfg/defaults/server.

-f speclist

Thespeclistis a (comma-separated) list of specifications of the formdst=src. rsync is used to copy eachsrc to
the correspondingdstbefore compiling the sources.

-F path

Search the (comma-separated) path for validation files. The default is /var/lcfg/conf/server/validation.

-h

If this option is present, status information, including all errors and warnings are stored for display on an
HTML status page, rather than being printed to stdout. Normally, the CGI scriptsstatus and indexwill be
used to display this status information. The-soption can be used to automatically generate static HTML pages
which do not require the CGI sripts, howver this is less flexible and results in slower compilations.

-H path

Search the (comma-separated) path for header files. The files must have an extension of.h. The default is
/var/lcfg/conf/server/include,/usr/lib/lcfg/server/include.

-L lockfiles

Thelockfilesargument is comma-separated list of full pathnames for lock files. In daemon mode,mkxprof will
not compile source files while any of these lockfiles exist; the compilation will be deferred until the next poll,
or notification. This provides a mechanism to allow several synchronized changes to be made to related files,
in an atomic way.

-o opts

Additional options for the rsync command (see option-f). This can be used, for example, to specify included,
or excluded files.

-N fqdn

The full name of the server to be used in status displays etc. By default, this is obtained from thehostname
command, but an alias may be preferred for the server name.

-p time

When running as a daemon, this options species an interval to poll for changes to source files. It has the format:
timeh|m|s[+randomh|m|s]. The random addition can be used to distribute server load.

-P path

Search the (comma-separated) path for package lists. The files must have an extension of.pkgsor .rpms. The
string%r will be substituted with the value of theprofile.releaseresource. The default is /var/lcfg/conf/server/packages.

-r

If this option is present, mkxprof adds aderivation attribute to each resource indicating the source files(s) and
line number(s) at which the resource is defined.

(258) Revision 0.99.63: 06/01/05 14:10

Appendix C. Utilities C.3. mkxprof

-R

If this option is present, mkxprof rebuilds the dependency cache.

-s

This option generates static HTML pages containing status information. Normally, the-h option should be used
instead.

-S path

Search the (comma-separated) path for source files. These files have no extension. The default is /var/lcfg/conf/server/source.

-v

Verbose.

-w dir

The root of the published web directory. Profiles are generated in theprofiles subdirectory, and status reports
are generated in thestatus subdirectory. The default is /var/lcfg/conf/server/web when running as root, and
./LCFG when running as any other user.

-W flags

This option enables warnings for the categories listed by the comma-separated list offlags. Possible flags are
ack, ambiguous, cache, client, components, context, files, mutate, ref. Flags may be prefixed with+ or - to
enable/disable specific categories.

-x file

Write statistics records to the named file. For each compilation pass, a colon-separated record is written with
the following fields:

Unix time at start of compilation pass
Unix time at end of compilation pass
Number of ACKs received during this pass
Number of acks discarded (superseded by later ones)
Number of files examined
Number of files changed (or explicitly specified)
Number of recompiled hosts

SIGNALS

When running in daemon mode, mkxprof will accept UDP notifications from clients on the service portlcfgack (default
733). These notifications contain the timestamp of the latest received profile which mkxprof will record in the status
display.

A HUP signal causes the mkxprof daemon to re-examine the source files. This can be initiated remotely bysshor by
om, using therun or rebuild methods of theprofile component.

An INT signal will terminate the daemon cleanly.

FILES

/var/lcfg/conf/server/cache

Contains profile caches and dependency information used internally by mkxprof.

/var/lcfg/tmp/server

Contains temporary files.

/var/lcfg/conf/server/web

Directory for profiles and status files. This directory should be published by a web server.

The Complete Guide to LCFG (259)

The Complete Guide to LCFG Paul Anderson

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

2.1.64-1

(260) Revision 0.99.63: 06/01/05 14:10

Appendix C. Utilities C.4. qxprof

C.4 qxprof

Query LCFG profile

SYNOPSIS

/usr/bin/qxprof [options] [component[.resource]] | [resource=value] ...

DESCRIPTION

This command queries the DBM file generated by rdxprof for resource values and information. If a component without
a resource is specified, all resources with a non-empty value for that component are shown. Variable assignments
specified on the command line overide any corresponding resource values.

OPTIONS

-a

Show all resources for the given component, even if they have a null value.

-d

Dump resources values to stdout. This is the default if-eand-w are not specified.

-e

The resources are printed in a format which is suitable for direct evaluation by the shell. This creates envi-
ronment variables for all specified resources, prefixed withLCFGcomponent. Note that you probably want
to disable globbing (set -f) when evaluating the output form qxprof, otherwise unexpected shell expansions
may occur.

-h hostname

Use resources for the specified host, rather than the current host. Note that this is only useful if the a DBM file
for the specified host exists on the current machine; this will not normally be the case.rdxprof can however be
used to fetch the profile for any machine and create the appropriate DBM file.

-i

Instead of reading resources from the profile, the resources are read from variables in the current environment,
as created with the-e option.

-l

Load resources from profile. This is the default if neither-i or -r is specified.

-p pfx [,pfx]

The specified prefixes are used when creating shell variable names from resource names for exporting (or
importing) resources into the environment. The first prefix is for variable names representing resource values,
the second is for resource types. A%s in the prefix is replaced with the component name. The default values
are:LCFG%S,LCFGTYPE %.

-r file

Read resources from the named file.

-v

Verbose. As well as the value of the resource, print out the derivation and type, if available.

-w file

Write resources to the named file.

The Complete Guide to LCFG (261)

The Complete Guide to LCFG Paul Anderson

FILES

/var/lcfg/conf/profile/dbm/hostname

The DBM file.

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.23-1

(262) Revision 0.99.63: 06/01/05 14:10

Appendix C. Utilities C.5. rdxprof

C.5 rdxprof

Read XML LCFG profile

DESCRIPTION

This command optionally fetches an XML LCFG profile from a web server and converts it into a DBM file. If no
hostname is specified, the profile for the local host is used.

rdxprof is normally run from the LCFGclient component.

SYNOPSIS

/usr/sbin/rdxprof [options] [hostname]

OPTIONS

-a

If this option is present, rdxprof will send UDP acknowledgements on service port lcfgack (default 733) to the
server(s) containing the timestamp of the last received profile.

-A time

When running as a daemon and sending server acknowledgements, this option specifies the minimum and
maximum times between acknowledgements in the formminh|m|s[+maxh|m|s]. Acknowledgements will never
be sent faster thanminapart, and will never be delayed for more thanmax.

-C component

Error messages are passed to the log system for the named component.

-d

If this option is present, rdxprof runs as a daemon, polling or waiting for notifications of changed profiles.

-D flags

This option enables debugging for the categories listed by the comma-separated list offlags. Possible flags are
ack, all, attrs, callbacks, context, changes, daemon, fetch, parse, rpms. Flags may be prefixed with+ or -
to enable/disable specific categories.

-n

If this option is specified, then rdxprof will notify other components when their resources change by calling the
method specified in theclient.reconfig componentresource.

-p time

When running as a daemon, this option species an interval to poll for new profiles. It has the format:timeh|m|s[+randomh|m|s].
The random addition can be used to distribute server load.

-r prefix

A prefix to be used for all pathnames. This is used by the profile component at install time when the root of the
client filesystem is not the same as the current root.

-t time

The timeout interval for HTTP requests, in the formtimeh|m|s.

The Complete Guide to LCFG (263)

The Complete Guide to LCFG Paul Anderson

-u urls

A comma-separated list of URLs for servers containing copies of the profile. If the URLs do not end in.xml,
rdxprof will appenddomain/hostname/XML/profile.xml . rdxprof will then attempt to fetch new profiles from
the specified URLs in random order. If this option is not present, the profile is assumed to already exist in
/var/lcfg/conf/profile/xml. If anyfile: URLs are specified, they are tried before remote URLs. URLs staring
with none: are ignored (this may be useful for passing to the client install method). A URL consisting simply
of the stringfile: is assumed to refere to the default location of the local profile (this is useful during the install
process).

-U component method

If this option is present, the component methodcomponent methodwill be called whenever any RPMs in the
profile change. Themethodmay be followed by any necessary options. This requires the-n option.

-v

Verbose.

-W flags

This option enables warnings for the categories listed by the comma-separated list offlags. Possible flags areall,
conflict, context, notify , error , fetch, parse, rpms, server. Flags may be prefixed with+ or - to enable/disable
specific categories.

-x path

The the path of the directory containing the profile file (with the name profile.xml). If a client and server are
both running on the same machine, it is useful to set this to the pathname of the profile directory used by the
server. This allows the client to retrieve new profiles directly from the local disk, as they are generated by the
server, without requiring a running web server.

SIGNALS

When not running in daemon mode, rdxprof will attempt to fetch the profile from the specified URL (if any) and rebuild
the dbm file.

When running in daemon mode, a new profile will only be fetched if it is newer than the current profile. This will only
be rebuilt into a new dbm file, if the profile is newer than the dbm file.

In daemon mode, UDP packets on service portlcfg (default 732) can be sent by mkxprof to initiate a poll for new
profile. The following signals are also recognised:

HUP

This is equivalent to a notification packet from the server; it initiates a poll for a new profile.

USR1

This initiates a rebuild of the dbm file, if the profile, or the context has changed. This signal is sent by the client
component after changing the context.

POLL

The initiates a rebuild of the dbm file regardless of any changes to the profile or the context.

USR2

This requests an acknowledgement to be sent to the server.

INT

Requests server termination.

(264) Revision 0.99.63: 06/01/05 14:10

Appendix C. Utilities C.5. rdxprof

FILES

/var/lcfg/conf/profile/xml

The directory containing the profiles.

/var/lcfg/conf/profile/dbm

The directory containing the generated DBM files.

/var/lcfg/conf/profile/context

The directory containing the context files.

/var/lcfg/conf/profile/rpmcfg

The directory containing the client RPM configuration files.

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

2.1.35-1

The Complete Guide to LCFG (265)

The Complete Guide to LCFG Paul Anderson

C.6 shiftpressed

Detect if shift key pressed

SYNOPSIS

/usr/sbin/shiftpressed

DESCRIPTION

This command tests if the shift key is pressed on the console connected to the stdin. It returns an exit status of 0 if the
key is pressed, 2 if it is not, and 1 if the stdout is not a console or the state cannot be determined for some other reason.

PLATFORMS

Redhat7, Redhat9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.23-1

(266) Revision 0.99.63: 06/01/05 14:10

Appendix C. Utilities C.7. sxprof

C.7 sxprof

Substitute LCFG resource values in template

SYNOPSIS

/usr/bin/sxprof [options] component[template[target-file]] | [var=value] ...

DESCRIPTION

Substitute LCFG resources from the specified component into the given template, to generate the named target file.
Variable assignments specified on the command line overide any corresponding resource values.

OPTIONS

-B

Do not create backup files. Normally backup files are created with an extension of ”˜ ”.

-d

Dummy run. Do not change target files, but still report which files would have changed, and set exit status
accordingly.

-h hostname

Use resources for the specified host, rather than the current host. Note that this is only useful if the a DBM file
for the specified host exists on the current machine; this will not normally be the case.rdxprof can however be
used to fetch the profile for any machine and create the appropriate DBM file.

-i

Instead of reading resources from the profile, the resources are read from variables in the current environment,
as created with the-e option ofqxprof .

-l

Load resources from profile (default).

-L delimiter

Set the left delimiter used for substituted expresions (default<%). This is Perl regexp and sxprof wil fail if
meta-characters are not correctly escaped.

-p pfx [,pfx]

The specified prefixes are used when creating shell variable names from resource names for importing re-
sources from the environment. The first prefix is for variable names representing resource values, the sec-
ond is for resource types. A%s in the prefix is replaced with the component name. The default values are:
LCFG%S,LCFGTYPE %.

-r file

Read resources from named file rather than profile.

-R delimiter

Set the right delimiter used for substituted expresions (default% >). This is Perl regexp and sxprof wil fail if
meta-characters are not correctly escaped.

-t

The component resourcetemplate is expected to contain a list of tags specifying a template to be processed.
The resourcestsrc tag and tdst tag should contain the template source and target filenames. These tem-
plates are processed before any templates specified on the command line.

The Complete Guide to LCFG (267)

The Complete Guide to LCFG Paul Anderson

-v

Verbose.

EXIT STATUS

1. 0

No target files have been changed.

2. 1

Error.

3. 2

At least one of the target files has changed.

TEMPLATE LANGUAGE

See the manual page for the Perl moduleLCFG::Template .

FILES

/var/lcfg/conf/profile/dbm/hostname

The DBM file.

/usr/share/doc/lcfg-utils-1.1.23/EXAMPLE

An example template.

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.23-1

(268) Revision 0.99.63: 06/01/05 14:10

Appendix D

Solaris Jumpstart Scripts

D.1 The start script

#!/bin/sh
set hostname to non fully qualified.
DAIHOSTNAME=‘uname -n‘
if echo $DAIHOSTNAME | grep ".ed.ac.uk" > /dev/null ; then

DAIHOSTNAME=‘echo $DAIHOSTNAME | cut -f1 -d.‘
hostname $DAIHOSTNAME
SI_HOSTNAME=$DAIHOSTNAME
export SI_HOSTNAME

fi
TZ=GB-Eire export TZ
umask 022

NFS mount LCFG utilities
things this must include:
- LCFG perl modules -- added to perl path
- LCFG client (inc rdxprof)
- tsort, cpp, gunzip (used by updatepkgs - not here)
LCFGNFS=harpy:/export/lcfg/image
LCFGMNT=/tmp/lcfg
PROFILEURL=http://tattie.inf.ed.ac.uk/profiles/
mkdir $LCFGMNT
mount -F nfs $LCFGNFS $LCFGMNT
PATH=$PATH:$LCFGMNT/bin:$LCFGMNT/sbin:$LCFGMNT/usr/bin:$LCFGMNT/usr/sbin
export PATH
download LCFG profile (adding lcfg perl module directory to module
search path)
PERL5LIB=$LCFGMNT/usr/perl5/5.6.1/lib/sun4-solaris-64int
PERL5LIB=$LCFGMNT/usr/perl5/5.6.1/lib:$PERL5LIB
PERL5LIB=$LCFGMNT/usr/perl5/site_perl/5.6.1/sun4-solaris-64int:$PERL5LIB
PERL5LIB=$LCFGMNT/usr/perl5/site_perl/5.6.1:$PERL5LIB
PERL5LIB=$LCFGMNT/usr/perl5/site_perl:$PERL5LIB
export PERL5LIB
rdxprof -u $PROFILEURL

create initial jumpstart profile
echo "install_type initial_install" > $SI_PROFILE
echo "system_type standalone" >> $SI_PROFILE
install the core cluster - everything else is installed in
lcfg_setup post-install
echo "cluster SUNWCreq" >> $SI_PROFILE

The Complete Guide to LCFG (269)

The Complete Guide to LCFG Paul Anderson

add fstab stuff - partitioning / filesys
echo "partitioning explicit" >> $SI_PROFILE
for disk in ‘qxprof fstab.disks | sed s/.*=//‘
do
for slice in ‘qxprof fstab.partitions_$disk | sed s/.*=//‘
do
echo "filesys $slice ‘qxprof fstab.size_$slice | sed s/.*=//‘ ‘qxprof fstab.mpt_$slice | sed s/.*=//‘" >> $SI_PROFILE
done
done

D.2 The finish script

#!/bin/sh
We’re read directly by the suninstall script. Execute all in subshell
We don’t want to influence our parent.
(
mountpoint of / for the new system
newroot=/a
export newroot

set a nice default umask
umask 022

location of files to install
install=$SI_CONFIG_DIR/install

copy the LCFG installation stuff into /a/etc/rc2.d so it gets
run on first reboot - do additional software installation there
cp $install/files/lcfg_setup $newroot/etc/rc2.d/S80lcfg_setup
chmod 755 $newroot/etc/rc2.d/S80lcfg_setup

echo installation complete
Subshell end
)

(270) Revision 0.99.63: 06/01/05 14:10

Appendix E

Standard Symbols

E.1 Symbols defined in os.mk

AR The GNUar program
AWK The GNUawk program
CC The GNU C compiler
DARWINONLY Set to the comment symbol (#) except on Darwin (OS X)
EGREP The GNUegrep program
ENCODING Perl commands to set byte encoding for scripts and input files
GREP The GNUgrep program
INITDIR The directory for init scripts
INSTALL The GNUinstall program
LCFGOS The OS name, as returned byuname -s
LIBMANSECT The manual page section for libraries
LINUX ONLY Set to the comment symbol (#) except on Linux
MAKE The GNUmake program
MANSECT The manual page section for admin commands
OSRELEASE The OS release
OSVERSION The OS version
PERL The pathname of theperl interpreter
PERL INST The directory set to use for Perl installations (”site” or ”vendor”)
PERL VERSION The perl version
RSYNC The location of rsync
SED The GNUsed program
SHELL Thebash shell
SOLARIS ONLY Set to the comment symbol (#) except on Solaris
SORT The GNUsort program
TAR The GNUtar program
TARHASNOT True if tar has noT option

The Complete Guide to LCFG (271)

The Complete Guide to LCFG Paul Anderson

E.2 Symbols defined in lcfg.mk

LCFGBIB Directory for BIB files.
LCFGBIBURL URL for BIB files.
LCFGBIN Directory for user binaries.
LCFGCLIENTDEF Directory for default resource files used by client
LCFGCONF Directory for generated files to be preserved between object runs. Files are normally pre-

fixed with the module name, or stored in subdirectories with the same name as the module.
LCFGCONFIGMSG A string giving the version of buildtools
LCFGDATA Directory for templates and other fixed configuration files. Files are normally prefixed with

the module name, or stored in subdirectories with the same name as the module.
LCFGDEF Deprecated (use LCFGSERVERDEF)
LCFGDOC Base directory for documentation.
LCFGHTML Directory for HTML files.
LCFGHTMLURL URL for HTML files.
LCFGLIB Base directory for read-only files.
LCFGLOCK Directory for lock files.
LCFGLOG Directory for log files.
LCFGMAN Base directory for man pages.
LCFGOM Location of ”om” program
LCFGPDF Directory for PDF files.
LCFGPDFURL URL for PDF files.
LCFGPERL Directory for Perl modules. Normally in the subdirectoryLCFG:: .
LCFGPOD Directory for POD files.
LCFGROTATED Directory for log rotate files.
LCFGSBIN Directory for system binaries.
LCFGSERVERDEF Directory for default resource files used by server
LCFGSTATUS Directory for status files.
LCFGTMP Directory for temporary files (may be deleted when objects are not running). Files are

normally prefixed with the module name, or stored in subdirectories with the same name
as the module. Components should not store temporary files in system tmp directories.

LCFGURL Base URL for documentation.
TESTCONF Config directory used in test environment
TESTING Set to ”yes” to use test environment
TESTLOCK Lock directory used in test environment
TESTLOG Logfile used in test environment
TESTPERLV Perl assignment to set up test environment
TESTPID PID file used in test environment
TESTRES Resource file used in test environment
TESTROOT Root of test directory structure for test environment
TESTROTATE Logrotate directory used in test environment
TESTRUN Run file used in test environment
TESTSHELLV Shell assignments to setup test environment
TESTSRES Saved resource file used in test environment
TESTSTATUS Statusfule used for testing

(272) Revision 0.99.63: 06/01/05 14:10

Appendix E. Standard Symbols E.3. Symbols defined in site.mk

E.3 Symbols defined in site.mk

Thesite.mk file contains site-specific definitions. Under DICE, these are:
DICEBIB Directory for BIB files.
DICEBIBURL URL for BIB files.
DICEBIN Directory for user binaries.
DICEDOC Base directory for documentation.
DICEHTML Directory for HTML files.
DICEHTMLURL URL for HTML files
DICELIB Base directory for read-only files.
DICEMAN Directory for man pages.
DICEPDF Directory for PDF files.
DICEPDFURL URL for PDF files.
DICEPERL Directory for Perl modules. Normally in the subdirectoryDICE:: .
DICEPOD Directory for POD files.
DICESBIN Directory for system binaries.
DICEURL Base URL for documentation

The Complete Guide to LCFG (273)

The Complete Guide to LCFG Paul Anderson

(274) Revision 0.99.63: 06/01/05 14:10

Appendix F

Perl Modules

The Complete Guide to LCFG (275)

The Complete Guide to LCFG Paul Anderson

F.1 LCFG::Component

Perl module for LCFG Generic component

DESCRIPTION

This module provides a superclass for creating LCFG components in Perl.

Components should subclass LCFG::Component, create a new instance of the class, and call theDispatch method to
excute the component method specified in the command line arguments. The LCFG componentperlex shows how this
is used in practice.

LCFG::Component attempts to provide an identical functionality to the shell generic componentngeneric.

FUNCTIONS

Equivalent Perl functions are provided for all the method functions described inlcfg-ngeneric. A hash of resource
values is passed as the first argument to each function, rather than passing the resources in the environment.

RESOURCES, LOCKING and LOG ROTATING

See the documentation for thengenericcomponent.

VARIABLES

All the variables described forlcfg-ngenerichave equivalent instance variables in the LCFG::Component class.

AD-HOC METHODS

Methods with names of the formMethod methodname, will be automatically called by the Dispatch function. Ad-hoc
methods should arrange to call theLock function if appropriate to prevent simultaneous method calls.

SEE ALSO

lcfg-ngeneric

The shell generic functions.

lcfg-perlex

An example component.

LCFG::Template

The template processor.

LCFG::Resources

The resource handling functions.

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

(276) Revision 0.99.63: 06/01/05 14:10

Appendix F. Perl Modules F.1. LCFG::Component

VERSION

1.1.23-1

The Complete Guide to LCFG (277)

The Complete Guide to LCFG Paul Anderson

F.2 LCFG::Inventory

Fetch and parse XML inventory

SYNOPSYS

use LCFG::Inventory;

Fetch and Parse LCFG inventory from server

$inv = new LCFG::Inventory
(URL => "http://blah", # URL

CACHE => "/foo/mycache", # Persistent cache
DEBUG => 1, # Debugging
FORCE => 1, # Force refresh the cache
NOFETCH => 1 # Use cache copy only

);

Return list of FQDNS in inventory

@hosts = $inv->Hosts();

Return inventory fields for given FQDN

$hash = $inv->Lookup("foo.bar.com");

Return hash of meta-information about inventory

$hash = $inv->Meta();

DESCRIPTION

When a new LCFG::Inventory object is created, the XML inventory information is fetched from the specified URL,
parsed and cached in a local file. TheHosts()function will return a list of FQDNs for all the hosts in the inventory, and
theLookup() function returns a hash of the inventory fields for a given FQDN.

If an explicit CACHE option is given, the named file will be used to store a persistent cache which will only be
refreshed when the remote XML changes. The FORCE option can be used to force the refresh of a persistent cache,
and the NOFETCH option can be used to force the use of the local cache without checking the remote copy.

EXAMPLE

/usr/share/doc/lcfg-inventory-1.1.3/example

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.3-1

(278) Revision 0.99.63: 06/01/05 14:10

Appendix F. Perl Modules F.3. LCFG::Resources

F.3 LCFG::Resources

Load and save LCFG resources

SYNOPSYS

use LCFG::Resources;

Load resources for named resources from adaptor profile
$res = LCFG::Resources::Load($hostname,$rspec1,$rspec2,...);

Dump resources for named resources to stdout
LCFG::Resources::Dump($res,$verbose,$all,$rspec1,$rspec2,...);

Dump named resources as shell assigments
LCFG::Resources::Export($res,$rspec1,$rspec2,...);

Load resource for named resources from environment
$res = LCFG::Resources::Import($rspec1,$rspec2,...);

Write named resources to file
LCFG::Resources::WriteFile($file,$res,$rspec1,$rspec2,...);

Read named resources from file
$res = LCFG::Resources::ReadFile($file,$rspec1,$rspec2,...);

Parse resource values from arguments
$res = LCFG::Resources::Parse($default,"res1=val1","res2=val2",...);

Merge resource structures
$res = LCFG::Resources::Merge($res1,$res2,...);

Set prefixes to be used for environment variables
LCFG::Resources::SetPrefix($value_prefix,$type_prefix);

DESCRIPTION

In the above,rspechas the formcomponent.resourceor simplycomponentwhich refers to all resources in the specified
component.

TheParseroutine accepts qualified, or unqualified resource names. Thedefaultcomponent is assumed for unqualified
resource names.

SetPrefix defines the prefixes attached to resource names when the values and types are exported or imported from
the environment.%s in the prefix strings is replaced by the name of the corresponding component. The defaults are
LCFG%S andLCFGTYPE%s .

Theresstructures have the following form:

{
’foo’ => {

’resource1’ => {
VALUE => value,
TYPE => type,

The Complete Guide to LCFG (279)

The Complete Guide to LCFG Paul Anderson

DERIVE = > derivation,
CONTEXT => context

},
’resource2’ => {

VALUE => value,
TYPE => type,
DERIVE = > derivation,
CONTEXT => context

},
......

}

’bar’ => {
’resource1’ => {

VALUE => value,
TYPE => type,
DERIVE = > derivation,
CONTEXT => context

},
’resource2’ => {

VALUE => value,
TYPE => type,
DERIVE = > derivation,
CONTEXT => context

},
......

}
.......

}

All routines returnundef and set the variable$@on error.

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.23-1

(280) Revision 0.99.63: 06/01/05 14:10

Appendix F. Perl Modules F.4. LCFG::Template

F.4 LCFG::Template

Substitute LCFG resources in template

SYNOPSYS

use LCFG::Template;

Load resources for ’foo’ and ’bar’ from adaptor profile
$result = LCFG::Template::Substitute($template,$target,$mode,@res);

Set delimiters
LCFG::Template::Delimiters($left,$right);

DESCRIPTION

This routine takes the name of a template file and substitutes LCFG resource values into the template from the given
list of resource tables. The return status indicates whether the target file has been changed by the operation (1) or not
(0). Themode option can be used to specify the following bit flags: if<mode>&1 is non-zero, then then the file is
never modified, but the return status indicates whether or not it would have been. If<mode>&2 is non-zero, then no
backup files are created.

The resources tables are in the same format as generated by the LCFG::Resources module; note that this includes the
name of the component at the top level of the structure:

{
’mycomp’ => {

’resource1’ => {
VALUE => value,
TYPE => type,
DERIVE = > derivation,
AU = > authors,
CONTEXT => context

},
’resource2’ => {

VALUE => value,
TYPE => type,
DERIVE = > derivation,
AU = > authors,
CONTEXT => context

},
......

}

If an error occurs, then the routine returnsundef and the variable$@contains the error message.

TEMPLATE LANGUAGE

The following constructions are supported in the template:

<%resource% >

Substitute the value of the named resource. The resource name my be preceeded by a# in which case the
”derivation” of the resource will be substituted instead of the value. This can be usefully used to generate
comments in the generated configuration file indicating the source of the various parameters. The delimiters

The Complete Guide to LCFG (281)

The Complete Guide to LCFG Paul Anderson

<%{% > and <%}% > (see below) are useful when substituting derivations in comments to prevent a re-
configuraion being flagged if only the derivations (and not the values) change.

Note that the LCFG client component will only notify components of changes to the value of resources – if only
derivations change, then the component is not automatically reconfigured, and values of substituted derivations
may be out of date.

<%if: expr% > text <%else:% > text <%end:% >

If the expris non-null, then substitute the first text, otherwise substitute the second text. Theelsepart is optional.

<%perl: expression% >

Substitute the result of the Perlexpresssion.

<%shell: command% >

Substitute the result of the Shellcommand.

<%ifdef: resource% > text <%else:% > text <%end:% >

If the resourceis defined, then substitute the first text, otherwise substitute the second text. Theelsepart is
optional.

<%for: var=expr% > text <%end:% >

Substitute one copy of the specifiedtext for each item in the space-separated listexpr. During substitution of
the text, the value of the variablevar may be referenced as<%var% >. (Any resource with the same name as
var will be inaccessible during the scope of the statement).

<%set: var=expr% >

Set a global variable to the given value. The global variable can be accessed as<%var% > at any subsequent
point in the program. Any resource with the same name will be inacessible.

<%include: filename% >

Include the contents of the specified template file, evaluating it in the current context.

<%\% >

Delete any following white space. This allows complex template expressions to span multiple lines, while still
generating output on a single line.

<%/*% > ... <%*/% >

Text between these delimiters is treated as a comment in the template and is not copied to the output file.

<%{% > ... <%}% >

Text between these delimiters is treated as insignificant. The text is still copied to the output file (evaluating any
expressions), but changes to this text are not sufficient for the return status to indicate that the file has changed.
This is useful for placing changing comments in the output (for example indicating the generation date) without
triggering reconfiguration of the component unless something significant has changed. Eg:

#<%{%> Generated on <%shell: date%> <%}%>

All the above elements exceptvar may contain nested statements.

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

(282) Revision 0.99.63: 06/01/05 14:10

Appendix F. Perl Modules F.4. LCFG::Template

VERSION

1.1.23-1

The Complete Guide to LCFG (283)

The Complete Guide to LCFG Paul Anderson

F.5 LCFG::Utils

LCFG Utility Functions

SYNOPSIS

Select fd for message output
SetOutput($fd)

Send Debug Message
Debug($component, $msg)

Send Info message (log file and terminal)
Info($component, $msg)

Send Log Message (logfile only)
Log($component, $msg)

Send Log Message with sepcial prefix
LogPrefix($component, $pfx, $msg)

Send OK Message (terminal only)
OK($component, $msg)

Send Warning Message
Warn($component, $msg)

Send Error Message (non fatal)
Error($component, $msg)

Send Fail Message (fatal error)
Fail($component, $msg)

Send Monitoring Message
Notify($component, $tag, $msg)

Send Message to named event log
Event($component, $event, $msg)

Clear event log
ClearEvent($component, $msg)

Start a Progress Bar
StartProgress($component, $msg)

Advance Progress Bar
Progress()

End Progress Bar
EndProgress()

Signal client component to acknowledge server
Ack()

Detect if shift key pressed
ShiftPressed()

(284) Revision 0.99.63: 06/01/05 14:10

Appendix F. Perl Modules F.5. LCFG::Utils

DESCRIPTION

These routines are Perl bindings for the LCFG utility routines inlcfgutils.

ENVIRONMENT VARIABLES

LCFG MONITOR

If this is set to the name of a pipe, erorrs, warnings and monitoring information will be written to the named
pipe.

LCFG SYSLOG

If this is set to the name of a syslog facility, errors and warnings will be copied to syslog.

SEE ALSO

LCFG::Utils, lcfgmsg, lcfg-ngeneric, LCFG::Component

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.23-1

The Complete Guide to LCFG (285)

The Complete Guide to LCFG Paul Anderson

(286) Revision 0.99.63: 06/01/05 14:10

Appendix G

C Libraries

The Complete Guide to LCFG (287)

The Complete Guide to LCFG Paul Anderson

G.1 lcfgutils

C library of LCFG utility routines.

SYNOPSIS

/* Set file descriptor for output (default stderr) */
void LCFG_SetOutput(FILE *fp)

/* Send Debug Message */
void LCFG_Debug(char *component, char *msg)

/* Send Info message (log file and terminal) */
void LCFG_Info(char *component, char *msg)

/* Send Log Message (logfile only) */
void LCFG_Log(char *component, char *msg)

/* Send Log Message with prefix */
void LCFG_Log(char *component, char *pfx, char *msg)

/* Send OK Message (terminal only) */
void LCFG_OK(char *component, char *msg)

/* Send Warning Message */
void LCFG_Warn(char *component, char *msg)

/* Send Error Message (non fatal) */
void LCFG_Error(char *component, char *msg)

/* Send Fail Message (fatal error) */
void LCFG_Fail(char *component, char *msg)

/* Send Monitoring Message */
void LCFG_Notify(char *component, char *tag, char *msg)

/* Send Message to named event log */
void LCFG_Event(char *component, char *event, char *msg)

/* Clear event log */
void LCFG_ClearEvent(char *component, char *msg)

/* Start a Progress Bar */
int LCFG_StartProgress(char *component, char *msg)

/* Advance Progress Bar */
int LCFG_Progress(void)

/* End Progress Bar */
int LCFG_EndProgress(void)

/* Signal client component to acknowledge server */
void LCFG_Ack(void)

/* Detect if shift key pressed (0=no, 1=yes, -1=don’t know) */
int LCFG_ShiftPressed(void)

(288) Revision 0.99.63: 06/01/05 14:10

Appendix G. C Libraries G.1. lcfgutils

DESCRIPTION

These routines are used by the LCFG generic component for reporting log and error information. Daemons can use the
same routines for reporting so that error message are passed to the status and monitoring systems.

ENVIRONMENT VARIABLES

LCFG MONITOR

If this is set to the name of a pipe, erorrs, warnings and monitoring information will be written to the named
pipe.

LCFG SYSLOG

If this is set to the name of a syslog facility, errors and warnings will be copied to syslog.

SEE ALSO

LCFG::Utils, lcfgmsg, lcfg-ngeneric, LCFG::Component

PLATFORMS

Redhat7, Redhat9, Solaris9

AUTHOR

Paul Anderson<dcspaul@inf.ed.ac.uk>

VERSION

1.1.23-1

The Complete Guide to LCFG (289)

The Complete Guide to LCFG Paul Anderson

(290) Revision 0.99.63: 06/01/05 14:10

Appendix H

Code Examples

The Complete Guide to LCFG (291)

The Complete Guide to LCFG Paul Anderson

H.1 Example Shell Component

This section includes default file and code for the example Shell component. Note that the code is shown after processing
and substitution with thelcfg-buildtools (11). For an example of how the code would appear before processing,
see appendixI.

H.1.1 Resource Defaults

/*
* LCFG example component : default resources
*
* Paul Anderson <dcspaul@inf.ed.ac.uk>
* Version: 1.1.4 02/04/04 10:34 (Schema 1)
*
* ** Generated file : do not edit **
*
*/

#include "ngeneric-1.def"
#include "om-1.def"

schema 1
server foo.bar.com
template /usr/lib/lcfg/conf/example/template
configfile /var/lcfg/conf/example/config

(292) Revision 0.99.63: 06/01/05 14:10

Appendix H. Code Examples H.1. Example Shell Component

H.1.2 Example Component

#!/bin/bash
###
#
Example LCFG Component
#
Paul Anderson <dcspaul@inf.ed.ac.uk>
Version 1.1.4 : 02/04/04 10:34
#
** Generated file : do not edit **
#
###

. /usr/lib/lcfg/components/ngeneric

##
Configure() {
##

Use sxprof to substitute the configuration parameters from the
environment into the template.
/usr/bin/sxprof -i $_COMP $LCFG_example_template \

$LCFG_example_configfile

Was anything changed? Or did the substitution fail?
status=$?; [$status = 2] && LogMessage "configuration changed"
[$status = 1] && Fail "failed to create config file (see logfile)"

At this point, we should check if the daemon is running, and
if so notify it of any changes (if necessary)

}

##
Start() {
##

Start daemon here
Daemon "SOME COMMAND TO RUN MY DAEMON"
return;

}

##
Stop() {
##

Stop daemon here
return;

}

##
Dispatch methods
##

Dispatch "$@"

The Complete Guide to LCFG (293)

The Complete Guide to LCFG Paul Anderson

H.2 Example Perl Component

This section includes default file and code for the example Perl component. Note that the code is shown after processing
and substitution with thelcfg-buildtools (11). For an example of how the code would appear before processing,
see appendixI.

H.2.1 Resource Defaults

/*
* LCFG example component in Perl : default resources
*
* Paul Anderson <dcspaul@inf.ed.ac.uk>
* Version: 1.1.3 07/08/03 16:47 (Schema 1)
*
* ** Generated file : do not edit **
*
*/

#include "ngeneric-1.def"
#include "om-1.def"

schema 1
server foo.bar.com

(294) Revision 0.99.63: 06/01/05 14:10

Appendix H. Code Examples H.2. Example Perl Component

H.2.2 Perlex Component

#!/usr/bin/perl
###
#
Example LCFG Component in Perl
#
Paul Anderson <dcspaul@inf.ed.ac.uk>
Version 1.1.3 : 07/08/03 16:47
#
** Generated file : do not edit **
#
###

use bytes; use open IO => ’:bytes’;
package LCFG::PerlEx;
@ISA = qw(LCFG::Component);

use strict;
use LCFG::Component;

##
Resource variables
##

my $server = undef;

##
sub Configure($$@) {
##

my $self = shift;
my $res = shift;
my @args = @_;

##
We illustrate two different cases here. Normally, you wouldn’t
use both together:
##

$server = $res->{’server’}->{VALUE};

##
(1) Firstly, we recreate a configuration file when we get a reconfigure
call. Normally, this would be used if you have no daemon, or if
your daemon is a separate program.
##

my $status = LCFG::Template::Substitute
(’/usr/lib/lcfg/conf/perlex/template’,

’/var/lcfg/conf/perlex/config’, 0, $res);

unless (defined($status)) {
$self->LogMessage($@);
$self->Fail("failed to create config file (see logfile)");

}

$self->LogMessage("configuration changed") if ($status==1);

At this point, we should check if the daemon is running, and

The Complete Guide to LCFG (295)

The Complete Guide to LCFG Paul Anderson

if so notify it of any changes (if necessary)

##
(2) Secondly, if we are writing our own daemon which runs as
a fork of this component code, then we use this routine to signal
the daemon to reload its resources
##

$self->ConfigureDaemon($res,@args);
}

##
sub Start($$@) {
##

my $self = shift;
my $res = shift;
my @args = @_;

##
Use this routine to start a daemon running as a fork of the
current code. This invokes the DaemonStart() routine.
##

$self->StartDaemon($res,@args);

##
If you want to run an external daemon program, you should start
it here and record the PID somewhere so you can stop it later
##

##
If you don’t have a daemon, you don’t need a Start() routine
at all.
##

}

##
sub Stop($$@) {
##

my $self = shift;
my $res = shift;
my @args = @_;

##
Use this routine to signal a daemon running as a fork of the
current code. This invokes the DaemonStop() routine.
##

$self->StopDaemon($res,@args);

##
If you want to run an external daemon program, you should have
saved the PID in the Start() routine, so you can kill it here.
You probably want to wait here until you are satisfied that the
daemon really has stopped.
##

##

(296) Revision 0.99.63: 06/01/05 14:10

Appendix H. Code Examples H.2. Example Perl Component

If you don’t have a daemon, you don’t need a Stop() routine
at all.
##

}

###
sub DaemonConfigure($$@) {
###

my $self = shift;
my $res = shift;
my @args = @_;

This gets called * AT INTERRUPT TIME * in the daemon process
when any resources have changed. Only use this if you are
writing your daemon code as a fork of this component code.

$self->LogMessage("daemon reconfigured: @args");

$server = $res->{’server’}->{VALUE};
}

###
sub DaemonStop($$@) {
###

my $self = shift;
my $res = shift;
my @args = @_;

This gets called * AT INTERRUPT TIME * in the daemon process
when the component is stopped. Only use this if you are
writing your daemon code as a fork of this component code.

$self->LogMessage("daemon stopped: @args");
exit(0);

}

###
sub DaemonStart($$@) {
###

my $self = shift;
my $res = shift;
my @args = @_;

This is the main daemon loop.
Normally, this will not exit. It will be terminated by
an INT signal which invokes a call to DaemonStop().

$self->LogMessage("daemon started: version 1.1.3 - @args");

while (1) {
$self->LogMessage("Hello World: server=$server");
sleep(10);

}
}

##
Dispatch methods

The Complete Guide to LCFG (297)

The Complete Guide to LCFG Paul Anderson

##

new LCFG::PerlEx() -> Dispatch();

(298) Revision 0.99.63: 06/01/05 14:10

Appendix I

Buildtools Examples

The following examples show source files from thelcfg-example component, as stored in the CVS – i.e. before
processing and substitution by thelcfg-buildtools (11). For an example of how the code would appear before
processing, see appendixH.1.

I.1 Sample config.mk for LCFG Component

COMP=example
NAME=lcfg-$(COMP)
DESCR=An Example LCFG component
V=1.1.4
R=1
SCHEMA=1
VERSION=$(V)
GROUP=LCFG
AUTHOR=Paul Anderson <dcspaul@inf.ed.ac.uk>
PLATFORMS=Redhat7, Redhat9, Solaris9

CONFIGDIR=$(LCFGCONF)/$(COMP)

MANDIR=$(LCFGMAN)/man$(MANSECT)

DATE=02/04/04 10:34
TARFILE=lcfg-example-1.1.4.src.tgz
PROD=
DEV=#

The Complete Guide to LCFG (299)

The Complete Guide to LCFG Paul Anderson

I.2 Sample Makefile for LCFG Component

##
Distribution Makefile
##

.PHONY: configure install clean

all: configure

include buildtools.mk

##
Configure
##

configure: $(COMP) $(COMP).def $(COMP).pod $(NAME).$(MANSECT) template

##
Install
##

install: configure
@echo installing ...
@mkdir -p $(PREFIX)$(LCFGCOMP)
@mkdir -p $(PREFIX)$(LCFGPOD)
@mkdir -p $(PREFIX)$(LCFGSERVERDEF)
@mkdir -p $(PREFIX)$(LCFGCLIENTDEF)
@mkdir -p $(PREFIX)$(MANDIR)
@mkdir -p $(PREFIX)$(LCFGDATA)/$(COMP)
@mkdir -p $(PREFIX)$(CONFIGDIR)
@$(INSTALL) -m 0555 $(COMP) $(PREFIX)$(LCFGCOMP)/$(COMP)
@$(INSTALL) -m 0555 template $(PREFIX)$(LCFGDATA)/$(COMP)/template
@$(INSTALL) -m 0444 $(NAME).$(MANSECT) $(PREFIX)$(MANDIR)/$(NAME).$(MANSECT)
@$(INSTALL) -m 0444 $(COMP).pod $(PREFIX)$(LCFGPOD)/$(COMP).pod
@$(INSTALL) -m 0444 $(COMP).def $(PREFIX)$(LCFGSERVERDEF)/$(COMP)-$(SCHEMA).def
@$(INSTALL) -m 0444 $(COMP).def $(PREFIX)$(LCFGCLIENTDEF)/$(COMP)-$(SCHEMA).def

##
Cleanup
##

clean::
@echo cleaning $(NAME) files ...
@rm -f $(COMP) $(COMP).pod $(COMP).def $(NAME).$(MANSECT)

(300) Revision 0.99.63: 06/01/05 14:10

Appendix I. Buildtools Examples I.3. Sample Source for LCFG Component

I.3 Sample Source for LCFG Component

#!@SHELL@
###
#
Example LCFG Component
#
@AUTHOR@
Version @VERSION@ : @DATE@
#
@MSG@
#
###

@TESTSHELLV@ . @LCFGCOMP@/ngeneric

##
Configure()
##

Use sxprof to substitute the configuration parameters from the
environment into the template.
@LCFGBIN@/sxprof -i $_COMP $LCFG_example_template $LCFG_example_configfile

Was anything changed? Or did the substitution fail?
status=$?; [$status = 2] && LogMessage "configuration changed"
[$status = 1] && Fail "failed to create config file (see logfile)"

At this point, we should check if the daemon is running, and
if so notify it of any changes (if necessary)

##
Start()
##

Start daemon here
Daemon "SOME COMMAND TO RUN MY DAEMON"
return;

##
Stop()
##

Stop daemon here
return;

##
Dispatch methods
##

Dispatch "$@"

The Complete Guide to LCFG (301)

The Complete Guide to LCFG Paul Anderson

I.4 Sample POD for LCFG Component

=head1 NAME

example - An example LCFG component

=head1 DESCRIPTION

This component is an example only.

=head1 RESOURCES

=over 4

=item B<server>

An example resource which gets substituted into the configuration file.

=back

=head1 PLATFORMS

Redhat7, Redhat9, Solaris9

=head1 AUTHOR

Paul Anderson <dcspaul@inf.ed.ac.uk>

(302) Revision 0.99.63: 06/01/05 14:10

Appendix I. Buildtools Examples I.5. Sample specfile for LCFG Component

I.5 Sample specfile for LCFG Component

Summary: @DESCR@
Name: @NAME@
Version: @V@
Vendor: University of Edinburgh
Release: @R@
Copyright: GPL
Group: @GROUP@/Components
Source: @TARFILE@
BuildArch: noarch
BuildRoot: /var/tmp/%name-build
Packager: @AUTHOR@
Requires: lcfg-ngeneric

%description
An example LCFG component.
@LCFGCONFIGMSG@

%prep
%setup

%build
@MAKE@

%install
rm -rf $RPM_BUILD_ROOT
@MAKE@ PREFIX=$RPM_BUILD_ROOT install

%postun
[$1 = 0] && rm -f @LCFGROTATED@/@NAME@
exit 0

%files
%defattr(-,root,root)
%doc ChangeLog README README.BUILD
%doc @LCFGMAN@/man@MANSECT@/*
%doc @LCFGPOD@/@COMP@.pod
@LCFGCOMP@/@COMP@
@LCFGDATA@/*
@CONFIGDIR@/
@LCFGCLIENTDEF@/@COMP@-@SCHEMA@.def
These files are only included because we want to include the
source files as documentation since this is an example
%doc Makefile specfile example.cin example.pod config.mk

%package defaults-s@SCHEMA@
Summary: Default resources for @NAME@
Group: @GROUP@/Defaults
Prefix: @LCFGSERVERDEF@
BuildArch: noarch
%description defaults-s@SCHEMA@
Default resources for the LCFG example component.
@LCFGCONFIGMSG@
%files defaults-s@SCHEMA@
%defattr(-,root,root)
@LCFGSERVERDEF@/@COMP@-@SCHEMA@.def

%clean
rm -rf $RPM_BUILD_ROOT

The Complete Guide to LCFG (303)

The Complete Guide to LCFG Paul Anderson

(304) Revision 0.99.63: 06/01/05 14:10

Appendix J

Software Package Lists

The following lists show the current versions of the packages required for an LCFG installation. Thecorepackages are
required to run the basic LCFG framework and are sufficient to follow the tutorial in chapter3. Thestandardpackages
are the extra packages required to completely configure a basic client. Theadditionalandcontributedpackages provide
further optional components. G Packages marked(P) are pre-requisite packages which are required by some of the
LCFG components in the category, but are not themselves part of the LCFG distribution. Packages marked(S) are
component default files which need to be present (only) on the LCFG server.

J.1 Redhat 9 Packages

Core Packages (Redhat 9)

lcfg-authorize-0.99.5-1 . Basic Authorization module for LCFG
lcfg-authorize-defaults-s1-0.99.5-1 (S) . Default resources for lcfg-authorize
lcfg-buildtools-2.0.34-1 . . . Tools for Building and Packaging LCFG Modules from the CVS Repository
lcfg-client-2.1.35-1 . LCFG profile client
lcfg-client-defaults-s2-2.1.15-1 (S) . Default resources for lcfg-client
lcfg-client-defaults-s3-2.1.35-1 (S) . Default resources for lcfg-client
lcfg-example-1.1.4-1 . An Example LCFG component
lcfg-example-defaults-s1-1.1.4-1 (S) . Default resources for lcfg-example
lcfg-file-1.0.9-1 . The LCFG file component
lcfg-file-defaults-s1-1.0.9-1 (S) . Default resources for lcfg-file
lcfg-inventory-1.1.3-1 . LCFG inventory component
lcfg-inventory-client-1.1.3-1 Client-side modules and applications for the LCFG inventory
lcfg-inventory-defaults-s1-1.1.3-1 (S) . Default resources for lcfg-inventory
lcfg-logserver-1.1.12-1 . LCFG logserver
lcfg-logserver-defaults-s1-1.1.12-1 (S) . Default resources for lcfg-logserver
lcfg-ngeneric-1.1.23-1 . LCFG new generic component
lcfg-ngeneric-defaults-s1-1.1.23-1 (S) . Default resources for lcfg-ngeneric
lcfg-om-0.3.14-1 . Component execution manager for LCFG
lcfg-om-defaults-s1-0.3.14-1 (S) . default resources for components which use om
lcfg-perlex-1.1.3-1 . An Example LCFG component in Perl
lcfg-perlex-defaults-s1-1.1.3-1 (S) . Default resources for lcfg-perlex
lcfg-server-2.1.64-1 . LCFG server component
lcfg-server-defaults-s2-2.1.3-1 (S) . Default resources for lcfg-server
lcfg-server-defaults-s3-2.1.64-1 (S) . Default resources for lcfg-server
lcfg-utils-1.1.23-1 . LCFG resources libraries and utilities
perl-Time-modules-2003.1126-1 (P) . Time-modules module for perl
perl-W3C-SAX-XmlParser-0.99-3 (P) . W3C-SAX-XmlParser module for perl
perl-W3C-Util-Basekit-0.91-3 (P) . W3C-Util-Basekit module for perl

The Complete Guide to LCFG (305)

The Complete Guide to LCFG Paul Anderson

Standard Packages (Redhat 9)

lcfg-alias-1.0.0-1 . The LCFG mail alias component
lcfg-alias-defaults-s1-1.0.0-1 (S) . Default resources for lcfg-alias
lcfg-auth-0.100.8-1 . LCFG auth component
lcfg-auth-defaults-s1-0.100.8-1 (S) . Default resources for lcfg-auth
lcfg-boot-1.1.30-1 . LCFG boot component
lcfg-boot-defaults-s2-1.2.7-1 (S) . Default resources for lcfg-boot
lcfg-buildinstallroot-0.99.8-1 . Script to rebuild the LCFG installroot
lcfg-cron-1.1.4-1 . LCFG cron component
lcfg-cron-defaults-s2-1.1.4-1 (S) . Default resources for lcfg-cron
lcfg-dhclient-0.91.15-1 . A component for configuring the dhclient object
lcfg-dns-6.1.39-1 . The DNS LCFG component
lcfg-dns-defaults-s2-6.1.38-1 (S) . Default resources for lcfg-dns
lcfg-foomatic-0.99.9-1 . The LCFG foomatic component
lcfg-foomatic-defaults-s1-0.99.9-1 (S) . Default resources for lcfg-foomatic
lcfg-fstab-1.1.22-1 . LCFG fstab component
lcfg-fstab-defaults-s2-1.1.22-1 (S) . Default resources for lcfg-fstab
lcfg-gdm-0.99.20-1 . LCFG gdm component
lcfg-gdm-defaults-s1-0.99.20-1 (S) . Default resources for lcfg-gdm
lcfg-grub-1.2.3-1 . component for controlling the grub bootloader
lcfg-grub-defaults-s1-1.2.3-1 (S) . Default resources for lcfg-grub
lcfg-grub-defaults-s2-1.4.0-1 (S) . Default resources for lcfg-grub
lcfg-hackparts-0.100.8-1 . =LCFG partition creation software
lcfg-hardware-0.100.4-1 . LCFG hardware component
lcfg-hardware-defaults-s2-0.100.4-1 (S) . Default resources for lcfg-hardware
lcfg-init-0.100.2-1 . LCFG init component
lcfg-init-defaults-s1-1.0.4-1 (S) . Default resources for lcfg-init
lcfg-install-0.100.15-1 . LCFG install component
lcfg-install-defaults-s1-0.100.15-1 (S) . Default resources for lcfg-install
lcfg-kerberos-1.32.22-1 . LCFG kerberos component
lcfg-kerberos-defaults-s5-1.32.22-1 (S) . Default resources for lcfg-kerberos
lcfg-kernel-0.101.6-1 . LCFG kernel component
lcfg-kernel-defaults-s1-0.101.6-1 (S) . Default resources for lcfg-kernel
lcfg-lcfginit-0.99.4-1 . Initialize LCFG
lcfg-lprng-0.99.38-1 . LCFG LPRng LPD component
lcfg-lprng-defaults-s1-0.99.38-1 (S) . Default resources for lcfg-lprng
lcfg-mailng-1.7.3-1 . LCFG mail component
lcfg-mailng-defaults-s1-1.6.25-1 (S) . Default resources for lcfg-mailng
lcfg-mailng-defaults-s2-1.7.3-1 (S) . Default resources for lcfg-mailng
lcfg-network-1.99.8-1 . LCFG network component
lcfg-network-defaults-s2-1.99.8-1 (S) . Default resources for lcfg-network
lcfg-nsswitch-0.100.6-1 . LCFG nsswitch component
lcfg-nsswitch-defaults-s2-0.100.6-1 (S) . Default resources for lcfg-nsswitch
lcfg-nsu-2.4.2-1 . nsu command
lcfg-nsu-defaults-s1-2.4.2-1 (S) . Default resources for lcfg-nsu
lcfg-ntp-2.1.13-1 . The NTP LCFG component
lcfg-ntp-defaults-s2-2.1.15-1 (S) . Default resources for lcfg-ntp
lcfg-pam-1.0.5-1 . LCFG pam component
lcfg-pam-defaults-s2.0-1.0.5-1 (S) . Default resources for lcfg-pam
lcfg-routing-3.3.40-1 . The routing component
lcfg-routing-defaults-s2-3.3.39-1 (S) . Default resources for lcfg-routing
lcfg-rpmcache-1.1.17-1 . The LCFG rpm cache component
lcfg-rpmcache-defaults-s1-1.1.5-1 (S) . Default resources for lcfg-rpmcache
lcfg-rpmcache-defaults-s2-1.1.17-1 (S) . Default resources for lcfg-rpmcache
lcfg-sshd-1.20.4-1 . LCFG sshd component
lcfg-sshd-defaults-s2-1.20.4-1 (S) . Default resources for lcfg-sshd
lcfg-syslog-1.1.0-1 . LCFG syslog component
lcfg-syslog-defaults-s2-1.1.0-1 (S) . Default resources for lcfg-syslog
lcfg-tcpwrappers-0.99.5-1 . LCFG tcpwrappers component

(306) Revision 0.99.63: 06/01/05 14:10

Appendix J. Software Package Lists J.1. Redhat 9 Packages

lcfg-tcpwrappers-defaults-s1-0.99.5-1 (S) Default resources for lcfg-tcpwrappers
lcfg-updaterpms-0.100.29-1 . LCFG updaterpms component
lcfg-updaterpms-defaults-s2-0.100.29-1 (S) Default resources for lcfg-updaterpms
lcfg-xfree-1.0.0-1 . LCFG amd component
lcfg-xfree-defaults-s1-1.0.0-1 (S) . Default resources for lcfg-xfree
lcfg-xinetd-0.99.7-1 . LCFG xinetd component
lcfg-xinetd-defaults-s1-0.99.7-1 (S) . Default resources for lcfg-xinetd
netgroup-1.0-3 (P) . Lists entries in NIS netgroups
updaterpms-2.101.17-1 (P) . Utilities to manage installed RPMs

Additional Packages (Redhat 9)

Libnet-1.0.2a-2 (P) . Libnet - low level network library
PerlTk-800.024-2 (P) . Perl Tk module
lcfg-amd-0.100.10-1 . LCFG amd component
lcfg-amd-defaults-s2-0.100.10-1 (S) . Default resources for lcfg-amd
lcfg-apache-1.1.7-1 . LCFG apache component
lcfg-apache-defaults-s1-1.1.7-1 (S) . Default resources for lcfg-apache
lcfg-apm-0.100.5-1 . LCFG apm component
lcfg-apm-defaults-s1-0.100.5-1 (S) . Default resources for lcfg-apm
lcfg-arpwatch-1.99.13-1 . The arpwatch component
lcfg-arpwatch-defaults-s1-1.99.13-1 (S) . Default resources for lcfg-arpwatch
lcfg-defetc-0.100.2-1 . LCFG default etc files
lcfg-devlabel-defaults-s1-0.99.0-1 (S) . Default resources for lcfg-devlabel
lcfg-dialup-0.99.12-1 . LCFG dialup component
lcfg-dialup-defaults-s1-0.99.12-1 (S) . Default resources for lcfg-dialup
lcfg-divine-3.5.31-1 . LCFG divine component
lcfg-divine-defaults-s1-3.5.31-1 (S) . Default resources for lcfg-divine
lcfg-etcservices-0.99.4-1 . LCFG etcservices component
lcfg-etcservices-defaults-s1-0.99.4-1 (S) Default resources for lcfg-etcservices
lcfg-ipfilter-0.0.21-1 . The ipfilter LCFG component
lcfg-ipfilter-defaults-s1-0.0.21-1 (S) . Default resources for lcfg-ipfilter
lcfg-iptables-0.0.77-1 . The iptables LCFG component
lcfg-iptables-defaults-s1-0.0.80-1 (S) . Default resources for lcfg-iptables
lcfg-irda-0.99.4-1 . The LCFG IrDA component
lcfg-irda-defaults-s1-0.99.4-1 (S) . Default resources for lcfg-irda
lcfg-ldap-2.0.28-1 . LCFG ldap component
lcfg-localhome-2.0.9-1 . LCFG localhome component
lcfg-localhome-defaults-s3-2.0.8-1 (S) . Default resources for lcfg-localhome
lcfg-nfs-1.0.2-1 . LCFG nfs component
lcfg-nfs-defaults-s2-1.0.1-1 (S) . Default resources for lcfg-nfs
lcfg-nscd-1.5.5-1 . LCFG nscd component
lcfg-nscd-defaults-s2-1.5.5-1 (S) . Default resources for lcfg-nscd
lcfg-nut-defaults-s2-2.1.55-1 (S) . Default resources for lcfg-nut
lcfg-pcmcia-0.100.2-1 . LCFG pcmcia component
lcfg-pcmcia-defaults-s1-0.100.2-1 (S) . Default resources for lcfg-pcmcia
lcfg-ramdisk-1.3.0-1 . LCFG ramdisk component
lcfg-ramdisk-defaults-s1-1.3.0-1 (S) . Default resources for lcfg-ramdisk
lcfg-rmirror-1.8.9-1 . This is the LCFG component for the rmirror service.
lcfg-rmirror-defaults-s2-1.8.6-1 (S) . Default resources for lcfg-rmirror
lcfg-rpmaccel-0.99.3-1 . LCFG rpmaccel component
lcfg-rpmaccel-defaults-s1-0.99.3-1 (S) . Default resources for lcfg-rpmaccel
lcfg-rsync-2.1.0-1 . LCFG rsync component
lcfg-rsync-defaults-s2-2.1.0-1 (S) . Default resources for lcfg-rsync
lcfg-schemes-0.99.18-1 . LCFG network scheme handling
lcfg-snmp-3.1.4-1 . The snmp LCFG component
lcfg-snmp-defaults-s2-3.1.4-1 (S) . Default resources for lcfg-snmp
lcfg-symlink-0.100.6-1 . LCFG symlink component
lcfg-symlink-defaults-s2-0.100.6-1 (S) . Default resources for lcfg-symlink

The Complete Guide to LCFG (307)

The Complete Guide to LCFG Paul Anderson

lcfg-vlan-0.100.0-1 . LCFG vlan component
lcfg-vlan-defaults-s1-0.100.0-1 (S) . Default resources for lcfg-vlan
lcfg-ypclient-0.99.7-1 . LCFG ypclient component
lcfg-ypclient-defaults-s1-0.99.7-1 (S) . Default resources for lcfg-ypclient
perl-Expect-1.15-1 (P) . Expect module for perl
perl-IO-Tty-1.02-1 (P) . IO-Tty module for perl
pump-0.8.11-1 (P) . A Bootp and DHCP client for automatic IP configuration.

Contributed Packages (Redhat 9)

lcfg-bluez-0.99.11-1 . LCFG mail component
lcfg-bluez-defaults-s1-0.99.11-1 (S) . Default resources for lcfg-bluez
lcfg-toshset-0.99.3-1 . The LCFG toshset component
lcfg-toshset-defaults-s1-0.99.3-1 (S) . Default resources for lcfg-toshset
lcfg-vigor-0.99.12-1 . The LCFG Vigor component
lcfg-vigor-defaults-s1-0.99.12-1 (S) . Default resources for lcfg-vigor
lcfg-vmidi-0.99.6-1 . The LCFG VMIDI component
lcfg-vmidi-defaults-s1-0.99.6-1 (S) . Default resources for lcfg-vmidi

(308) Revision 0.99.63: 06/01/05 14:10

Bibliography

[And94] Paul Anderson. Towards a high-level machine configuration system. InProceedings of the 8th Large Instal-
lations Systems Administration (LISA) Conference, pages 19–26, Berkeley, CA, 1994. Usenix.
http://www.lcfg.org/doc/LISA8 Paper.pdf .

[And00] Paul Anderson. Large scale Linux configuration management.Linux Journal, pages 58–62, May 2000.
http://interactive.linuxjournal.com/Magazines/LJ72/3467.html .

[And01] Paul Anderson. Dice and lcfg software guidelines. Internal Document, 2001.
http://www.dice.informatics.ed.ac.uk/doc/dice-guidelines.pdf .

[AS00] Paul Anderson and Alastair Scobie. Large scale Linux configuration with LCFG. InProceedings of the
Atlanta Linux Showcase, pages 363–372, Berkeley, CA, 2000. Usenix.
http://www.lcfg.org/doc/ALS2000.pdf .

[AS02] Paul Anderson and Alastair Scobie. LCFG - the Next Generation. InUKUUG Winter Conference. UKUUG,
2002.
http://www.lcfg.org/doc/ukuug2002.pdf .

[Har03] Angus W Hardie. LCFG for Mac OS X. Undergraduate project report, June 2003.
http://www.lcfg.org/doc/hardie.pdf .

[Mic] Sun Microsystems.Solaris 9 Installation Guide. Sun Microsystems.
http://docs.sun.com/db/doc/816-7171/6md6pohq .

The Complete Guide to LCFG (309)

http://www.lcfg.org/doc/LISA8_Paper.pdf
http://interactive.linuxjournal.com/Magazines/LJ72/3467.html
http://www.dice.informatics.ed.ac.uk/doc/dice-guidelines.pdf
http://www.lcfg.org/doc/ALS2000.pdf
http://www.lcfg.org/doc/ukuug2002.pdf
http://www.lcfg.org/doc/hardie.pdf
http://docs.sun.com/db/doc/816-7171/6md6pohq

Index

.htaccess files,70
$CVS PFX,114
$INC DIR, 113
$PKG BUILD DIR, 114
$REL PFX,113
$ COMP

variable,92
$ DUMMY

variable,91
$ LOCKDIR

variable,92
$ LOGFILE

variable,89, 92
$ NOSTRICT

variable,91
$ OKMSG

variable,92
$ QUIET

variable,91
$ ROTATEDIR

variable,92
$ RUNFILE

variable,92
$ STATUSFILE

variable,92
$ TIMEOUT

variable,91
$ VERBOSE

variable,91

acceptbogons
arpwatch resource,129

access control,70
ack

client resource,139
ackinterval

vigor resource,241
acklimits

client resource,139
acknowledgements,72
acl , 215, 228
addr , 124
alias

component,124
alias , 124
aliases

alias resource,124
aliasfile

alias resource,124
mailng resource,199

allocated,175

inv resource,173
allowremoteroot

gdm resource,163
allowroot

gdm resource,163
amd

component,125
apache

component,126
apm

component,128
arptries

divine resource,147
arpwatch

arpwatch resource,129
component,129

assignop, 250
attr , 159
attributes, 249
auth

component,130
profile resource,215

auth , 228
authorization,70, 71
authorize

component,132
profile resource,215

autologin
gdm resource,163

background,12
basedir

xinetd resource,249
basefile

alias resource,124
battery

toshset resource,239
battery, 239
bgcolor

gdm resource,163
bgimage

gdm resource,163
bgscale

gdm resource,163
bgtype

gdm resource,163
bibliography,309
block

logserver resource,196
bluez

component,133

(310) Revision 0.99.63: 06/01/05 14:10

Index Index

boot
component,136

boot $
grub resource,167

broadcast
gdm resource,163

browser
gdm resource,163

buildinstallroot,66
buildtools,109

C preprocessor,41
cachedir

rpmcache resource,225
caps, 132
cfopts

divine resource,148
chainloader$

grub resource,167
chains

iptables resource,178
checksum

rmirror resource,219
checksum, 219
ClearPwrCycle

utility function, 87
ClearReboot

utility function, 87
client

component,139
client component,57
clientmode

grub resource,167
cluster

inv resource,173
inventory resource,175
mailng resource,200

command, 163
commands

gdm resource,163
comment,175

inv resource,173
profile resource,215

compiling,51
component

alias,124
amd,125
apache,126
apm,128
arpwatch,129
auth,130
authorize,132
bluez,133
boot,136
client,139
cron,141
dhclient,143
dialup,144
divine,146
dns,150
example,155

file, 156
foomatic,159
fstab,161
gdm,163
grub,166
hardware,169
init, 171
install,172
inv, 173
inventory,175
ipfilter, 177
iptables,178
irda,180
kerberos,181
kernel,187
ldap,188
localhome,194
logserver,195
lprng,197
mailng,199
network,201
nfs,203
ngeneric,204
nscd,208
nsswitch,210
ntp,211
pcmcia,213
perlex,214
profile,215
ramdisk,218
rmirror, 219
routing,221
rpmaccel,224
rpmcache,225
rsync,227
server,228
snmp,231
sshd,232
symlink,234
syslog,235
tcpwrappers,238
toshset,239
updaterpms,240
vigor, 241
vlan,242
vmidi, 243
xfree,244
xinetd,249

components,53
client resource,139
file resource,156
logserver resource,196
profile resource,215
writing components,79

conditionals
in templates,86

conf
foomatic resource,159

conf , 159
confdir

The Complete Guide to LCFG (311)

The Complete Guide to LCFG Paul Anderson

xinetd resource,249
conffile

xinetd resource,249
config

apache resource,126
configavailable

gdm resource,163
configfile

ntp resource,211
configfile $

grub resource,167
configRun

iptables resource,178
conftmpl

apache resource,126
foomatic resource,159

connect, 159
contextbattery

toshset resource,239
contextline

toshset resource,239
contextlabel

ntp resource,211
contexts,44
cppopts

rpmcache resource,225
cron

component,141

daemon
mailng resource,199
snmp resource,231

daemonportoptions
mailng resource,199

daemons,94
database,37
date,175

inv resource,173
Debug

utility function, 88
debug

client resource,139
lprng resource,197
server resource,228

defassignop, 249
default

foomatic resource,159
default file,38, 97
defaultboot$

grub resource,166
defaultDomain

ipfilter resource,177
defaultface

gdm resource,163
defaults

xinetd resource,249
defcontext

divine resource,148
defpath

server resource,228
defsession

gdm resource,164
defvalue, 249
deleteafter

rmirror resource,220
deleteafter, 220
derive

server resource,228
descr, 159
dev

vmidi resource,243
dhclient

component,143
divine resource,147

dhcptries
divine resource,147

dialup
component,144

directory
arpwatch resource,129

disklist
rmirror resource,219

disks
ramdisk resource,218

Dispatch
Perl function,83
Shell function,82

display
inv resource,173

divine,45
component,146

dns
component,150

Do
utility function, 87

dohosts
divine resource,148

domain,175
inv resource,173
ipfilter resource,177
profile resource,215

dotdef file,38, 97
driftfile

ntp resource,211
driver , 159
dst , 228
dstdir , 219
dtimeout

divine resource,147
dund

bluez resource,133
dundargs

bluez resource,133

editing configurations,37
enableservices

xinetd resource,249
EndProgress

utility function, 88
Error

utility function, 88
example

(312) Revision 0.99.63: 06/01/05 14:10

Index Index

component,155
exclude

gdm resource,164
export

ipfilter resource,177
exportexport

ipfilter resource,177
exportimport

ipfilter resource,177
exporting

ipfilter resource,177

facedir
gdm resource,164

Fail
utility function, 88

failsound
divine resource,148

fallback $
grub resource,166

fetch
server resource,228

file
component,156

file , 156, 215, 228
filegen ...

ntp resource,212
files

file resource,156
finish,270
foomatic

component,159
format

profile resource,215
fstab

component,161
future,13

gdm
component,163

generic components,82
genhdfile

rpmcache resource,225
getaddr

ntp resource,212
greeter

gdm resource,164
group

profile resource,215
group , 156
groups

authorize resource,132
grub

component,166
grubfiles

grub resource,166
guidelines

DICE guidelines (document),109

haltcommand
gdm resource,164

hardware
component,169

hcid auth
bluez resource,133

hcid encrypt
bluez resource,133

hcid iscan
bluez resource,133

hcid linkmode
bluez resource,133

hcid linkpolicy
bluez resource,133

hcid name
bluez resource,133

hcid pairing
bluez resource,133

hcid pscan
bluez resource,133

hcid security
bluez resource,133

hcitmpl
bluez resource,133

hdrpath
server resource,228

header files,39
helper

bluez resource,133
hiddenmenu$

grub resource,166
honorindirect

gdm resource,164
hostbootmenu

dhclient resource,143
hostfilename

dhclient resource,143
hostid

snmp resource,231
hostinstallroot

dhclient resource,143
hostname

dhclient resource,143
hostrootpath

dhclient resource,143
hosts

gdm resource,164
inventory resource,175

inbound
vigor resource,241

Info
utility function, 88

inif
iptables resource,178

init
component,171

initcmd
gdm resource,164

initrd $
grub resource,167

install
component,172

The Complete Guide to LCFG (313)

The Complete Guide to LCFG Paul Anderson

installation,65
installroot,65
interfaces

arpwatch resource,129
divine resource,147

inv
component,173

inventory,58
component,175

ip
vigor resource,241

ipfilter
component,177

iptables
component,178

irda
component,180

IsStarted
utility function, 87

jfile-inv, 59

kerberos
component,181

kerbprinc
lprng resource,197

kernel
component,187

kernelargs$
grub resource,167

killsig
snmp resource,231

kroot $
grub resource,167

language
choosing a language,80

lcfg-ngeneric,82
lcfg-utils, 81
LCFG::Component,83, 276
LCFG::Inventory,59, 278
LCFG::Resources,81, 279
LCFG::Template,84, 281
LCFG::Utils,81, 284
LCFG:Template,82
lcfginit, 57
lcfglock, 92, 254
lcfgmsg,81, 255
lcfgutils, 288
ldap

component,188
liblcfgutils, 81
lightweight installation,65
line

toshset resource,239
line , 239
linkdirs, 71

server resource,229
LoadProfile

utility function, 87
LoadStatus

utility function, 87
local

mailng resource,199
local net

snmp resource,231
localconf

grub resource,166
localformat

lprng resource,197
localhome

component,194
localname

lprng resource,197
localopts

lprng resource,197
localpath

rpmcache resource,225
localpcap

lprng resource,197
localsendto

lprng resource,197
location,175

inv resource,173
location , 159
Lock

utility fnction, 92
utility function, 87

lock $
grub resource,167

lockfiles
server resource,229

locking,92
logconfig

ntp resource,212
logfile, 89

rotation,90
LogMessage

utility function, 88
logo

gdm resource,164
logrequests

logserver resource,196
logserver

component,195
lprng

component,197

mac
dhclient resource,143

mailmanager
dhclient resource,143

mailng
component,199

mailto
iptables resource,178

maintainer,175
inv resource,173

make
snmp resource,231

manager,175
inv resource,173

(314) Revision 0.99.63: 06/01/05 14:10

Index Index

manageremail
dhclient resource,143

maxlines
logserver resource,196

maxpoll
ntp resource,211

maxupdate
profile resource,215

mctmpl
mailng resource,199

menucolour$
grub resource,166

menucolourselect$
grub resource,166

menuitems
grub resource,167

menulist$
grub resource,166

menuname, 164
minpoll

ntp resource,211
minuid

gdm resource,164
minv, 59
mkxprof,257
mode

mailng resource,199
mode, 156
model,175

inv resource,173
snmp resource,231

modules
iptables resource,178

monitor
ntp resource,212

monitoring,90
mpassword$

grub resource,167
mutation,42

network
component,201

nfs
component,203

ng cfdepend
ngeneric resource,205

ng cforder
ngeneric resource,205

ng debug
ngeneric resource,205

ng extralogs
ngeneric resource,205

ng logrotate
ngeneric resource,205

ng logrotate, 205
ng monitor

ngeneric resource,205
ng prod

ngeneric resource,206
ng prodmethod

ngeneric resource,206

ng reconfig
ngeneric resource,206

ng statusdisplay
ngeneric resource,206

ng syslog
ngeneric resource,206

ng verbose
ngeneric resource,206

ngeneric,82
component,204

nocontext
divine resource,148

node,175
inv resource,173
profile resource,215

notifications,72
notify

client resource,139
profile resource,216

nscd
component,208

nsswitch
component,210

ntp
component,211

ntpd
ntp resource,212

ntpd flags
ntp resource,212

ntpdate
ntp resource,212

OK
utility function, 88

oksound
divine resource,148

opt , 160
options, 160
optv , 160
os,175

inv resource,173
outbound

vigor resource,241
outif

iptables resource,178
output

component output,88
overview,14
owner,175

inv resource,174
lprng resource,197

owner , 156

Package lists,38
package lists,49
packages

profile resource,216
pand

bluez resource,133
pandargs

bluez resource,134

The Complete Guide to LCFG (315)

The Complete Guide to LCFG Paul Anderson

passwd
profile resource,216

password$
grub resource,167

pcap, 160
pcaptmpl

foomatic resource,160
pcmcia

component,213
peers

ntp resource,211
perlex

component,214
perms

foomatic resource,160
perms, 160
permstmpl

foomatic resource,160
pidfile

ntp resource,212
pidfiles

divine resource,147
pin

bluez resource,134
pinginterval

vigor resource,241
pkgpath

server resource,229
poll

client resource,139
mailng resource,199
server resource,229

pollinterval
vigor resource,241

port
vigor resource,241

portability,80
postchains

iptables resource,178
postcmd

gdm resource,164
postProcess

iptables resource,178
ppp dns

bluez resource,134
ppp extraarp

bluez resource,134
ppp extraauth

bluez resource,134
ppp extradef

bluez resource,134
ppp extra ipx

bluez resource,134
ppp extra route

bluez resource,134
ppp extras

bluez resource,134
ppp idle

bluez resource,134
ppp local

bluez resource,134
ppp netmask

bluez resource,134
ppp remote

bluez resource,134
ppptmpl

bluez resource,134
prechains

iptables resource,178
precmd

gdm resource,164
preprocessor,41
preserve

rpmcache resource,225
printcap

foomatic resource,160
printer,160
printers

lprng resource,197
profile

component,215
profile component,56
Progress

utility function, 88
pwf , 216, 229

queues
foomatic resource,160

qxprof,81, 261

raiseprio
ntp resource,212

ramdisk
component,218

rate
vmidi resource,243

rdxprof,263
readcommunity

snmp resource,231
rebootcommand

gdm resource,164
references,47
relay

mailng resource,199
release

makefile target,111
profile resource,216

RequestReboot
utility function, 87

resource lists,40
resources,39
restrict default

ntp resource,211
restrict localhost

ntp resource,211
restrict policy

ntp resource,211
rfaddr , 134
rfbind , 134
rfchannel, 134
rfdescr, 134

(316) Revision 0.99.63: 06/01/05 14:10

Index Index

rfdevs
bluez resource,134

rfe, 38
rmirror

component,219
root $

grub resource,167
rootmail

mailng resource,200
ropts

server resource,229
route

divine resource,147
routing

component,221
rpmaccel

component,224
rpmcache,64

component,225
rpmcfg

rpmcache resource,226
rpmcfg file,38
rpminc

client resource,139
rpmlist

rpmcache resource,225
rpmlist file,63
rpmlock

rpmcache resource,226
rpmpath

rpmcache resource,226
rsync

component,227
rsyncDir

iptables resource,178
rsyncFiles

iptables resource,178
rules

iptables resource,178
rulesetDir

iptables resource,178
run daemon

mailng resource,199
ntp resource,211

runas
arpwatch resource,129

rungroup
profile resource,216

runupdate,139
runuser

profile resource,216

safetylimit
rmirror resource,220

safetylimit , 220
SaveStatus

utility function, 87
schema file,97
schema version,38
scheme,45
schemes

dialup resource,144
divine resource,147

security,70
sendtraps

snmp resource,231
sendAs

arpwatch resource,129
sendTo

arpwatch resource,129
serialspeed$

grub resource,166
serialunit$

grub resource,166
server,69

component,228
example resource,155
perlex resource,214

server modules,69
server plugins,69
servermode

grub resource,167
servername

server resource,229
serverroot

apache resource,126
servers

gdm resource,164
ntp resource,211

services
xinetd resource,249

session, 164
sessioncmd

gdm resource,164
sessions

gdm resource,164
SetPwrCycle

utility function, 87
shell components,82
shiftpressed,266
shortlist

inv resource,174
size , 218
smconfig

mailng resource,199
smtmpl

mailng resource,199
snmp

component,231
sno,176

inv resource,174
snmp resource,231

softrelease
profile resource,216

software updating,61
Solaris,80
solaris,115
source files,37
spanning maps,48
splashimage

grub resource,167

The Complete Guide to LCFG (317)

The Complete Guide to LCFG Paul Anderson

spooler, 160
src , 229
srchost, 219
srcpath

server resource,229
sshd

component,232
SSL,70
start,269
StartProgress

utility function, 88
startssl

apache resource,126
statichtml

server resource,229
statistics

ntp resource,212
stats

server resource,229
statsdir

ntp resource,212
status

server resource,229
status display,73
statusurl

logserver resource,196
suspendcommand

gdm resource,165
sxprof,82, 84, 267
symlink

component,234
sysContact

snmp resource,231
sysDesc

snmp resource,231
sysLocation

snmp resource,231
syslog

component,235
systemmenu

gdm resource,165

tags,176
inv resource,174

tcpwrappers
component,238

template
template processor,84

terminal$
grub resource,166

test.mk,105
tickadj

ntp resource,212
timeout

client resource,140
rmirror resource,220

timeout , 220
timeout$

grub resource,166
timestamp

rmirror resource,219

timestamp, 219
tite $

grub resource,167
titlebar

gdm resource,165
tmpl , 156
toshset

component,239
trap community

snmp resource,231
trapHosts

snmp resource,231
trigger

rpmcache resource,226
tty

irda resource,180
type , 147, 156

ucdv4snmpd
snmp resource,231

Unlock
utility fnction, 92
utility function, 87

updaterpms,63
component,240

url
client resource,140

userfile
dialup resource,144
divine resource,147

users, 132, 218
utilities, 81
utility functions,87

v , 156
valpath

server resource,230
value , 160, 250
variables

file resource,156
verbose

client resource,140
server resource,230

version, 216
vigor

component,241
vlan

component,242
vmidi

component,243

waninfo
vigor resource,241

Warn
utility function, 88

warn
client resource,140
server resource,230

webdir
server resource,230

welcome

(318) Revision 0.99.63: 06/01/05 14:10

Index Index

gdm resource,165
wholefiles

rmirror resource,219
wholefiles, 220
wtimeout

divine resource,148

x
gdm resource,165

xdmcp
gdm resource,165

xfree
component,244

xinetd
component,249

xmldir
client resource,140

y
gdm resource,165

The Complete Guide to LCFG (319)

	Introduction
	Background
	The Future
	The LCFG Guide
	How to use this Guide

	Notation and Terminology

	The LCFG Architecture
	Software Updating and Installation
	The LCFG Software

	Getting Started - a Tutorial
	Prerequisites
	Installing the LCFG RPMs
	Compiling a Profile
	Reading a Profile
	Running a Component
	Publishing a Profile
	Running a Client Component
	Running a Server Component
	Summary
	Where Next?

	Managing a Site with LCFG
	Node Configuration
	The Configuration Database
	Source Files
	Default Files
	Package Lists
	Header Files

	Configuration File Syntax
	Resources
	Resource Lists
	The C Preprocessor
	Mutation
	Contexts
	References
	Spanning Maps
	Package Lists
	Semantics

	Configuration Deployment
	Compiling the Profile
	Profile Transport

	Components
	Component Methods
	Om
	Method Options
	Some Common Components
	The Profile Component
	The Client Component
	The Boot Component
	The File Component
	The Inventory Component

	Software Updating
	The Package List
	Updating RPMs
	The RPM Cache Component

	Node Installation
	Creating the Installroot
	Booting the Installroot
	Install Parameters
	Install-time Components

	Managing an LCFG Server
	Configuring a Server
	Organising Source Files
	Server Plugins
	Authorization and Security
	Access Control Files
	Access Control
	Authorization
	Protecting Other Web Files
	Acknowledgements and Notifications

	The Status Display

	Writing Components
	Choosing a Language
	Portability Issues
	The Component Framework
	Shell Bindings
	Perl Bindings
	The Template Processor
	Utility Functions
	Component Output
	Handling Logfiles
	Monitoring
	Option Processing
	Standard Variables
	Component Locking
	The Configure Method
	Managing External Daemons
	Writing Daemons in Perl

	Default Files
	Simple Resources
	Builtin Types
	String Validation
	Lists
	List Sorting
	Spanning Maps
	Common Resources
	Extending Existing Schema
	Pseudo-Nodes

	Testing Components
	Test-time status files
	Test-time resource values
	Test-time configuration files
	Test-time daemon execution
	Test installation
	Summary

	Packaging Components
	Reconfiguring on Component Upgrade

	Installing and Using a Component

	Buildtools
	Getting Started
	Substitution
	Creating New Releases
	Creating Distribution Tar Files
	Creating RPMS
	Creating Solaris Packages
	Rebuilding RPMs
	Miscellaneous Targets
	Branches
	Environment Variables

	LCFG on Solaris
	Prerequisites
	Solaris-specific components
	Package Management
	Booting
	Installation
	Jumpstart server configuration
	Node installation

	Macros
	Mutate.h
	Validate.h

	List of Components
	alias
	amd
	apache
	apm
	arpwatch
	auth
	authorize
	bluez
	boot
	client
	cron
	dhclient
	dialup
	divine
	dns
	example
	file
	foomatic
	fstab
	gdm
	grub
	hardware
	init
	install
	inv
	inventory
	ipfilter
	iptables
	irda
	kerberos
	kernel
	ldap
	localhome
	logserver
	lprng
	mailng
	network
	nfs
	ngeneric
	nscd
	nsswitch
	ntp
	pcmcia
	perlex
	profile
	ramdisk
	rmirror
	routing
	rpmaccel
	rpmcache
	rsync
	server
	snmp
	sshd
	symlink
	syslog
	tcpwrappers
	toshset
	updaterpms
	vigor
	vlan
	vmidi
	xfree
	xinetd

	Utilities
	lcfglock
	lcfgmsg
	mkxprof
	qxprof
	rdxprof
	shiftpressed
	sxprof

	Solaris Jumpstart Scripts
	The start script
	The finish script

	Standard Symbols
	Symbols defined in os.mk
	Symbols defined in lcfg.mk
	Symbols defined in site.mk

	Perl Modules
	LCFG::Component
	LCFG::Inventory
	LCFG::Resources
	LCFG::Template
	LCFG::Utils

	C Libraries
	lcfgutils

	Code Examples
	Example Shell Component
	Resource Defaults
	Example Component

	Example Perl Component
	Resource Defaults
	Perlex Component

	Buildtools Examples
	Sample config.mk for LCFG Component
	Sample Makefile for LCFG Component
	Sample Source for LCFG Component
	Sample POD for LCFG Component
	Sample specfile for LCFG Component

	Software Package Lists
	Redhat 9 Packages

	Bibliography
	Index

